## THE SINGULAR VALUE DECOMPOSITION (Cont.)

## - The Pseudo-inverse

- Use of SVD for least-squares problems
- Application to regularization
- Numerical rank


## Least-squares problem via the SVD

Problem: $\min _{x}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$ in general case.
$>$ We want to:

- Find *all* possible least-squares solutions.
- Also find the one with min. 2-norm.
$>$ SVD of $\boldsymbol{A}$ will play instrumental role in expressing solution
$>$ Write SVD of $\boldsymbol{A}$ as:

$$
A=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}}=\sum_{i=1}^{r} \sigma_{i} v_{i} u_{i}^{T}
$$

## Pseudo-inverse of an arbitrary matrix

$>$ Let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ which we rewrite as

$$
A=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{V_{1}^{T}}{V_{2}^{T}}=U_{1} \Sigma_{1} V_{1}^{T}
$$

$>$ Then the pseudo inverse of $\boldsymbol{A}$ is:

$$
A^{\dagger}=V_{1} \Sigma_{1}^{-1} U_{1}^{T}=\sum_{j=1}^{r} \frac{1}{\sigma_{j}} \boldsymbol{v}_{j} u_{j}^{T}
$$

$>$ The pseudo-inverse of $\boldsymbol{A}$ is the mapping from a vector $\boldsymbol{b}$ to the (unique) Minumum Norm solution of the LS problem: $\min _{x}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}^{2}$ - (to be shown)
$>$ In the full-rank overdetermined case, the normal equations yield $x=\underbrace{\left(A^{T} A\right)^{-1} A^{T}}_{A^{\dagger}} b$
10-2

1) Express $\boldsymbol{x}$ in $\boldsymbol{V}$ basis : $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}=\left[\boldsymbol{V}_{1}, \boldsymbol{V}_{2}\right]\binom{\boldsymbol{y}_{1}}{\boldsymbol{y}_{2}}$
2) Then left multiply by $\boldsymbol{U}^{T}$ to get

$$
\|A x-b\|_{2}^{2}=\left\|\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}-\binom{U_{1}^{T} b}{U_{2}^{T} b}\right\|_{2}^{2}
$$

3) Find all possible solutions in terms of $\boldsymbol{y}=\left[\boldsymbol{y}_{1} ; \boldsymbol{y}_{2}\right]$What are all least-squares solutions to the above system? Among these which one has minimum norm?

Answer: From above, must have $y_{1}=\Sigma_{1}^{-1} U_{1}^{T} b$ and $y_{2}=$ anything (free).

$$
\text { Recall that: } \quad \begin{aligned}
x & =\left[V_{1}, V_{2}\right]\binom{y_{1}}{y_{2}}=V_{1} y_{1}+V_{2} y_{2} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} b+V_{2} y_{2} \\
& =\boldsymbol{A}^{\dagger} b+V_{2} y_{2}
\end{aligned}
$$

$>$ Note: $A^{\dagger} b \in \operatorname{Ran}\left(A^{T}\right)$ and $V_{2} y_{2} \in \operatorname{Null}(A)$.
Therefore: least-squares solutions are all of the form:

$$
A^{\dagger} b+w \quad \text { where } \quad w \in \operatorname{Null}(A)
$$

$>$ Smallest norm when $y_{2}=0$, i.e., when $\boldsymbol{w}=0$.

10-5
Moore-Penrose Inverse

The pseudo-inverse of $\boldsymbol{A}$ is given by

$$
A^{\dagger}=V\left(\begin{array}{cc}
\Sigma_{1}^{-1} & 0 \\
0 & 0
\end{array}\right) U^{T}=\sum_{i=1}^{r} \frac{v_{i} u_{i}^{T}}{\sigma_{i}}
$$

## Moore-Penrose conditions:

The pseudo inverse $\boldsymbol{X}$ of a matrix is uniquely determined by these four conditions:
(1) $A X A=A$
(2) $\boldsymbol{X} \boldsymbol{A} \boldsymbol{X}=\boldsymbol{X}$
(3) $(\boldsymbol{A X})^{H}=\boldsymbol{A X}$
(4) $(\boldsymbol{X A})^{H}=\boldsymbol{X} \boldsymbol{A}$
$>$ In the full-rank overdetermined case, $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$
$>$ Minimum norm solution to $\min _{x}\|A x-b\|_{2}^{2}$ satisfies $\Sigma_{1} y_{1}=U_{1}^{T} b, y_{2}=0$.
$>$ It is

$$
x_{L S}=V_{1} \Sigma_{1}^{-1} U_{1}^{T} b=A^{\dagger} b
$$If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ what are the dimensions of $\boldsymbol{A}^{\dagger}$ ?, $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ ?, $\boldsymbol{A}^{\dagger} \boldsymbol{A}^{\dagger}$ ?Show that $\boldsymbol{A}^{\dagger} \boldsymbol{A}$ is an orthogonal projector. What are its range and null-space?Same questions for $\boldsymbol{A} \boldsymbol{A}^{\dagger}$.

## Least-squares problems and the SVD

> The SVD can give much information on solutions of overdetermined and underdetermined linear systems.

Let $A$ be an $m \times n$ matrix and $A=U \Sigma V^{T}$ its SVD with $r=\operatorname{rank}(A), V=$ $\left[v_{1}, \ldots, \boldsymbol{v}_{n}\right] \boldsymbol{U}=\left[\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{m}\right]$. Then

$$
\boldsymbol{x}_{L S}=\sum_{i=1}^{r} \frac{\boldsymbol{u}_{i}^{T} \boldsymbol{b}}{\sigma_{i}} \boldsymbol{v}_{i}
$$

minimizes $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$ and has the smallest 2-norm among all possible minimizers. In addition,

$$
\rho_{L S} \equiv\left\|b-A x_{L S}\right\|_{2}=\|z\|_{2} \text { with } z=\left[u_{r+1}, \ldots, u_{m}\right]^{T} b
$$

## Least-squares problems and pseudo-inverses

$>$ A restatement of the first part of the previous result:

## Consider the general linear least-squares problem <br> $$
\min _{x \in S}\|x\|_{2}, \quad S=\left\{x \in \mathbb{R}^{n} \mid\|b-A x\|_{2} \min \right\}
$$

This problem always has a unique solution given by

$$
x=A^{\dagger} b
$$

$\square$ Consider the matrix:

$$
A=\left(\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

- Compute the thin SVD of $A$
- Find the matrix $B$ of rank 1 which is the closest to the above matrix in the 2-norm sense
- What is the pseudo-inverse of $\boldsymbol{A}$ ?
- What is the pseudo-inverse of $\boldsymbol{B}$ ?
- Find the vector $x$ of smallest norm which minimizes $\|b-\boldsymbol{A} \boldsymbol{x}\|_{2}$ with $b=(1,1)^{T}$
- Find the vector $x$ of smallest norm which minimizes $\|b-B x\|_{2}$ with $b=(1,1)^{T}$

10-10 $\qquad$
Remedy: SVD regularization

Truncate the SVD by only keeping the $\sigma_{i}^{\prime} s$ that are $\geq \tau$, where $\tau$ is a threshold
Gives the Truncated SVD solution (TSVD solution:)

$$
x_{T S V D}=\sum_{\sigma_{i} \geq \tau} \frac{u_{i}^{T} b}{\sigma_{i}} v_{i}
$$

Many applications [e.g., Image and signal processing,..]

Result: solution could be completely meaningless.

## Numerical rank and the SVD

$>$ Assuming the original matrix $\boldsymbol{A}$ is exactly of rank $k$ the computed SVD of $A$ will be the SVD of a nearby matrix $\boldsymbol{A}+\boldsymbol{E}$ - Can show: $\left|\hat{\sigma}_{i}-\sigma_{i}\right| \leq \alpha \sigma_{1} \underline{\mathbf{u}}$
$>$ Result: zero singular values will yield small computed singular values and $r$ larger sing. values.
$>$ Reverse problem: numerical rank - The $\epsilon$-rank of $\boldsymbol{A}$ :

$$
r_{\epsilon}=\min \left\{\operatorname{rank}(B): B \in \mathbb{R}^{m \times n},\|A-B\|_{2} \leq \epsilon\right\}
$$Show that $r_{\epsilon}$ equals the number sing. values that are $>\epsilon$Show: $\boldsymbol{r}_{\epsilon}$ equals the number of columns of $\boldsymbol{A}$ that are linearly independent for any perturbation of $\boldsymbol{A}$ with norm $\leq \epsilon$.

$>$ Practical problem : How to set $\epsilon$ ?
10-13 $\qquad$ GvL 2.4, 5.4-5-SVD1

Then $A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}$
$>$ Thin SVD is $\boldsymbol{A}=U_{1} \Sigma_{1} V_{1}^{T}$. Now $U_{1}, \Sigma_{1}$ are $m \times m$ and:

$$
\begin{aligned}
A^{T}\left(A A^{T}\right)^{-1} & =V_{1} \Sigma_{1} U_{1}^{T}\left[U_{1} \Sigma_{1}^{2} U_{1}^{T}\right]^{-1} \\
& =V_{1} \Sigma_{1} U_{1}^{T} U_{1} \Sigma_{1}^{-2} U_{1}^{T} \\
& =V_{1} \Sigma_{1} \Sigma_{1}^{-2} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} \\
& =A^{\dagger}
\end{aligned}
$$

Example: Pseudo-inverse of $\left(\begin{array}{cccc}0 & 1 & 2 & 0 \\ 1 & 2 & -1 & 1\end{array}\right)$ is?
$>$ Mnemonic: The pseudo inverse of $\boldsymbol{A}$ is $\boldsymbol{A}^{T}$ completed by the inverse of the smaller of $\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-1}$ or $\left(\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}\right)^{-1}$ where it fits (i.e., left or right)

## Pseudo inverses of full-rank matrices

Case 1: $m \geq n$ Then $A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}$
$>$ Thin SVD is $A=U_{1} \Sigma_{1} V_{1}^{T}$ and $V_{1}, \Sigma_{1}$ are $n \times n$. Then:

$$
\begin{aligned}
\left(A^{T} A\right)^{-1} A^{T} & =\left(V_{1} \Sigma_{1}^{2} V_{1}^{T}\right)^{-1} V_{1} \Sigma_{1} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-2} V_{1}^{T} V_{1} \Sigma_{1} U_{1}^{T} \\
& =V_{1} \Sigma_{1}^{-1} U_{1}^{T} \\
& =A^{\dagger}
\end{aligned}
$$

Example: Pseudo-inverse of $\left(\begin{array}{cc}0 & 1 \\ 1 & 2 \\ 2 & -1 \\ 0 & 1\end{array}\right)$ is?

10-14

