A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem
$>$ Regularization methods require the solution of a least-squares linear system $A x=b$ approximately in the dominant singular space of A
$>$ The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A
$>$ Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate \boldsymbol{A} (or \boldsymbol{A}^{\dagger}) by a lower rank approximation $\boldsymbol{A}_{\boldsymbol{k}}$ (using dominant singular space) before solving original problem.
> This approximation captures the main features of the data while getting rid of noise and redundancy

Note: Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting.
> Good illustration: Information Retrieval (IR)

Information Retrieval: Vector Space Model

$>$ Given: a collection of documents (columns of a matrix \boldsymbol{A}) and a query vector \boldsymbol{q}.

$>$ Collection represented by an $\boldsymbol{m} \times \boldsymbol{n}$ term by document matrix with $a_{i j}=L_{i j} G_{i} N_{j}$
>Queries ('pseudo-documents') q are represented similarly to a column

Vector Space Model - continued

$>$ Problem: find a column of \boldsymbol{A} that best matches \boldsymbol{q}
$>$ Similarity metric: angle between the column and \boldsymbol{q} - Use cosines:

$$
\frac{\left|c^{T} q\right|}{\|c\|_{2}\|q\|_{2}}
$$

$>$ To rank all documents we need to compute

$$
s=A^{T} q
$$

$>s=$ similarity vector.
$>$ Literal matching - not very effective.

Use of the SVD

> Many problems with literal matching: polysemy, synonymy, ...
$>$ Need to extract intrinsic information - or underlying "semantic" information -
$>$ Solution (LSI): replace matrix \boldsymbol{A} by a low rank approximation using the Singular Value Decomposition (SVD)

$$
A=U \Sigma V^{T} \quad \rightarrow \quad A_{k}=U_{k} \Sigma_{k} V_{k}^{T}
$$

$>U_{k}$: term space, \boldsymbol{V}_{k} : document space.
$>$ Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$
s_{k}=A_{k}^{T} q=V_{k} \Sigma_{k} U_{k}^{T} q
$$

Issues:

$>$ Problem 1: How to select k ?
$>$ Problem 2: computational cost (memory + computation)
$>$ Problem 3: updates [e.g. google data changes all the time]
$>$ Not practical for very large sets

LSI : an example

$>$ Number of documents: 8
$>$ Number of terms: 9

$A=|$| $d 1$ | $d 2$ | $d 3$ | $d 4$ | $d 5$ | $d 6$ | $d 7$ | $d 8$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| | 1 | | 1 | 1 | | 1 | | bab |
| | 1 | 1 | | | | | 1 | chi |
| | | | | | 1 | 1 | 1 | gui |
| | | | 1 | | | | | hea |
| | 1 | 1 | | | | | 1 | hom |
| 1 | | | 1 | | | | | inf |
| | | | | 1 | 1 | | 1 | pro |
| | | 1 | 1 | | | | 1 | saf |
| 1 | | | 1 | | | | | tod |

x_{0} Get the anwser to the query Child Safety, so

$$
q=\left[\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

using cosines and then using LSI with $k=3$.

Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications
$>$ Often main goal of dimension reduction is not to reduce computational cost. Instead:

- Dimension reduction used to reduce noise and redundancy in data
- Dimension reduction used to discover patterns (e.g., supervised learning)
$>$ Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..

The problem

$>$ Given $\boldsymbol{d} \ll \boldsymbol{m}$ find a mapping $\Phi: x \in \mathbb{R}^{m} \longrightarrow y \in \mathbb{R}^{d}$
$>$ Mapping may be explicit (e.g., $\boldsymbol{y}=\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}$)
> Or implicit (nonlinear)

Practically:
 Find a low-dimensional representation $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$ of $\boldsymbol{X} \in$ $\mathbb{R}^{m \times n}$.

$>$ Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example: Digit images (a sample of 30)

A few 2-D 'reductions':

Projection-based Dimensionality Reduction

Given: a data set $\boldsymbol{X}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and \boldsymbol{d} the dimension of the desired reduced space \boldsymbol{Y}.

Want: a linear transformation from \boldsymbol{X} to \boldsymbol{Y}

$>m$-dimens. objects $\left(x_{i}\right)$ 'flattened' to d-dimens. space $\left(y_{i}\right)$
Problem: Find the best such mapping (optimization) given that the \boldsymbol{y}_{i} 's must satisfy certain constraints

Principal Component Analysis (PCA)

> PCA: find V (orthogonal) so that projected data $\boldsymbol{Y}=\boldsymbol{V}^{T} \boldsymbol{X}$ has maximum variance
$>$ Maximize over all orthogonal $m \times d$ matrices V :

$$
\sum_{i}\left\|y_{i}-\frac{1}{n} \sum_{j} y_{j}\right\|_{2}^{2}=\cdots=\operatorname{Tr}\left[V^{\top} \bar{X} \bar{X}^{\top} V\right]
$$

Where: $\bar{X}=\left[\bar{x}_{1}, \cdots, \bar{x}_{n}\right]$ with $\bar{x}_{i}=x_{i}-\mu, \mu=$ mean.
Solution: $V=\{$ dominant eigenvectors $\}$ of covariance matrix
> i.e., Optimal $\boldsymbol{V}=$ Set of left singular vectors of $\overline{\boldsymbol{X}}$ associated with d largest singular values.
(202 Show that $\overline{\boldsymbol{X}}=\boldsymbol{X}\left(I-\frac{1}{n} e e^{T}\right)$ (here $e=$ vector of all ones). What does the projector ($I-\frac{1}{n} e e^{T}$) do?

* 3 Show that solution V also minimizes 'reconstruction error' ..

$$
\sum_{i}\left\|\bar{x}_{i}-V V^{T} \bar{x}_{i}\right\|^{2}=\sum_{i}\left\|\bar{x}_{i}-V \bar{y}_{i}\right\|^{2}
$$

4. .. and that it also maximizes $\sum_{i, j}\left\|y_{i}-\boldsymbol{y}_{j}\right\|^{2}$

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

given data				predictions		
movie	Paul	Jane	Ann	Paul	Jane	

$>$ Minimize $\left\|(X-A)_{\text {mask }}\right\|_{F}^{2}+\mu\|X\|_{*}$
"minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."

