A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

- ightharpoonup Regularization methods require the solution of a least-squares linear system Ax = b approximately in the dominant singular space of A
- ightharpoonup The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A
- ➤ Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate A (or A^{\dagger}) by a lower rank approximation A_k (using dominant singular space) before solving original problem.

This approximation captures the main features of the data while getting rid of noise and redundancy

Note: Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting.

Good illustration: Information Retrieval (IR)

Information Retrieval: Vector Space Model

 \triangleright Given: a collection of documents (columns of a matrix A) and a query vector q.

- lacktriangle Collection represented by an $m{ imes}n$ term by document matrix with $a_{ij}=L_{ij}G_iN_j$
- ightharpoonup Queries ('pseudo-documents') q are represented similarly to a column

Vector Space Model - continued

- > Problem: find a column of A that best matches q
- \triangleright Similarity metric: angle between the column and q Use cosines:

$$\frac{|c^T q|}{\|c\|_2 \|q\|_2}$$

To rank all documents we need to compute

$$s = A^T q$$

- ightharpoonup s = similarity vector.
- ➤ Literal matching not very effective.

Use of the SVD

- ➤ Many problems with literal matching: polysemy, synonymy, ...
- ➤ Need to extract intrinsic information or underlying "semantic" information —
- ightharpoonup Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U \Sigma V^T \quad o \quad A_k = U_k \Sigma_k V_k^T$$

- $ightharpoonup U_k$: term space, V_k : document space.
- ➤ Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

Issues:

- Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- > Problem 3: updates [e.g. google data changes all the time]
- Not practical for very large sets

LSI: an example

```
%% D1 : INFANT & TODLER first aid
%% D2 :
        BABIES & CHILDREN's room for your HOME
% D3
             SAFETY at HOME
%% D4 : Your BABY's HEALTH and SAFETY
응응
      : From INFANT to TODDLER
%% D5 : BABY PROOFING basics
%% D6 : Your GUIDE to easy rust PROOFING
%% D7 : Beanie BABIES collector's GUIDE
%% D8 : SAFETY GUIDE for CHILD PROOFING your HOME
%% TERMS: 1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME
        6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER
%% Source: Berry and Browne, SIAM., '99
```

- Number of documents: 8
- ➤ Number of terms: 9

➤ Raw matrix (before scaling):

Get the anwser to the query Child Safety, so

$$q = [0\ 1\ 0\ 0\ 0\ 0\ 1\ 0]$$

using cosines and then using LSI with k=3.

(articles) – SVDapp

Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

- ➤ Often main goal of dimension reduction is not to reduce computational cost. Instead:
 - Dimension reduction used to reduce noise and redundancy in data
 - Dimension reduction used to discover patterns (e.g., supervised learning)
- ➤ Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance?..

The problem

ightharpoonup Given $d \ll m$ find a mapping

$$\Phi:x\in\mathbb{R}^m\longrightarrow y\in\mathbb{R}^d$$

- ightharpoonup Mapping may be explicit (e.g., $y = V^T x$)
- Or implicit (nonlinear)

Practically:

Find a low-dimensional representation $Y \in \mathbb{R}^{d \times n}$ of $X \in \mathbb{R}^{m \times n}$.

➤ Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example: Digit images (a sample of 30)

A few 2-D 'reductions':

Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, \ldots, x_n]$, and d the dimension of the desired reduced space Y.

Want: a linear transformation from X to Y

$$X \in \mathbb{R}^{m imes n}$$
 $V \in \mathbb{R}^{m imes d}$
 $Y = V^{ op} X$
 $Y \in \mathbb{R}^{d imes n}$

ightharpoonup m-dimens. objects (x_i) 'flattened' to d-dimens. space (y_i)

Problem: Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints

Principal Component Analysis (PCA)

- ightharpoonup PCA: find V (orthogonal) so that projected data $Y = V^T X$ has maximum variance
- \blacktriangleright Maximize over all orthogonal $m \times d$ matrices V:

$$\sum_i \left\| y_i - rac{1}{n} \sum_j y_j
ight\|_2^2 = \dots = ext{Tr} \left[oldsymbol{V}^ op ar{oldsymbol{X}} ar{oldsymbol{X}}^ op oldsymbol{V}
ight]$$

Where: $\bar{X}=[\bar{x}_1,\cdots,\bar{x}_n]$ with $\bar{x}_i=x_i-\mu,\,\mu=$ mean.

Solution: $V = \{ \text{ dominant eigenvectors } \}$ of covariance matrix

 \blacktriangleright i.e., Optimal V = Set of left singular vectors of \bar{X} associated with d largest singular values.

- Show that $\bar{X}=X(I-\frac{1}{n}ee^T)$ (here e= vector of all ones). What does the projector $(I-\frac{1}{n}ee^T)$ do?
- Show that solution V also minimizes 'reconstruction error' ...

$$\sum_i \|ar{x}_i - VV^Tar{x}_i\|^2 = \sum_i \|ar{x}_i - Var{y}_i\|^2$$

🔼 .. and that it also maximizes $\sum_{i,j} \|y_i - y_j\|^2$

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

given data				predictions		
movie	Paul	Jane	Ann	Paul	Jane	Ann
Title-1	-1	3	– 1	-1.2	1.7	-0.7
Title-2	4	X	3	2.8	-1.2	2.5
Title-3	– 3	1	-4	-2.7	1.0	-2.5
Title-4	X	–1	– 1	-0.5	-0.3	-0.6
Title-5	3	-2	1	1.8	-1.4	1.4
Title-6	-2	3	X	-1.6	1.8	-1.2
	\boldsymbol{A}			X		

ightharpoonup Minimize $\|(X-A)_{
m mask}\|_F^2 + \mu \|X\|_*$

"minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."

(articles) - SVDapp