 A few applications of the SVD Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem Regularization methods require the solution of a least-squares linear system Ax = b approximately in the dominant singular space of A The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A Methods utilizing Principal Component Analysis, e.g. Face Recognition. 	 <i>Commonality:</i> Approximate <i>A</i> (or <i>A</i>[†]) by a lower rank approximation <i>A_k</i> (using dominant singular space) before solving original problem. This approximation captures the main features of the data while getting rid of noise and redundancy <i>Note:</i> Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting. Good illustration: Information Retrieval (IR)
11-1 (articles) – SVDapp Information Retrieval: Vector Space Model	11-2 (articles) – SVDapp Vector Space Model - continued
> Given: a collection of documents (columns of a matrix A) and a query vector q . ••••••••••••••••••••••••••••••••••••	 Problem: find a column of A that best matches q Similarity metric: angle between the column and q - Use cosines: $\frac{ c^Tq }{ c _2 q _2}$ To rank all documents we need to compute $s = A^Tq$
> Queries ('pseudo-documents') q are represented similarly to a column	> $s = similarity$ vector.
	Literal matching – not very effective.
11-3 (articles) – SVDapp	11-4 (articles) – SVDapp

Use of the SVD

- > Many problems with literal matching: *polysemy*, *synonymy*, ...
- > Need to extract intrinsic information or underlying "semantic" information -
- \blacktriangleright Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

 $A = U \Sigma V^T \quad
ightarrow \quad A_k = U_k \Sigma_k V_k^T$

- $\succ U_k$: term space, V_k : document space.
- ► Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

Issues:

- > Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- > Problem 3: updates [e.g. google data changes all the time]
- > Not practical for very large sets

11-5	(articles) – SVDapp	11-6						(artio	cles) – SVDapp
LSI : an example			d1 d	ł2 d3	3 d 4	d5	d 6	d7 d	8
<pre>%% D1 : INFANT & TODLER first aid %% D2 : BABIES & CHILDREN's room for your HOME %% D3 : CHILD SAFETY at HOME %% D4 : Your BABY's HEALTH and SAFETY %% : From INFANT to TODDLER %% D5 : BABY PROOFING basics %% D6 : Your GUIDE to easy rust PROOFING %% D7 : Beanie BABIES collector's GUIDE %% D8 : SAFETY GUIDE for CHILD PROOFING your HOM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%</pre>	1E	➤ Raw matrix (before scaling): A =		1 1 1 1 1 1 1 1	1 1 1 1 1	1	1	1 1 1 1 1 1	bab chi gui hea hom inf pro saf tod
 Number of documents: 8 Number of terms: 9 		Get the anwser to the query Child $q = [0\ 1\ 0\ 0]$							
		using cosines and then using LSI with $k =$	= 3.					(artic	cles) – SVDapp

Dimension reduction

11-9

11-11

Dimensionality Reduction (DR) techniques pervasive to many applications

Often main goal of dimension reduction is not to reduce computational cost. Instead:

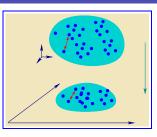
- Dimension reduction used to reduce noise and redundancy in data
- Dimension reduction used to discover patterns (e.g., supervised learning)

► Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..

The problem

► Given $d \ll m$ find a mapping $\Phi: x \in \mathbb{R}^m \longrightarrow y \in \mathbb{R}^d$

- > Mapping may be explicit (e.g., $y = V^T x$)
- > Or implicit (nonlinear)

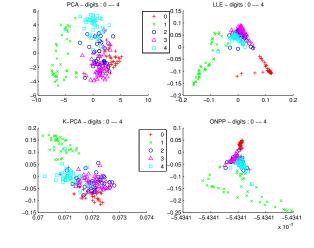


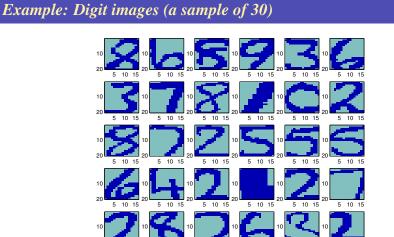
Practically:

Find a low-dimensional representation $Y \in \mathbb{R}^{d imes n}$ of $X \in \mathbb{R}^{m imes n}$.

Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.
11-10 (articles) – SVDapp

A few 2-D 'reductions':





(articles) – SVDapp

(articles) - SVDapp

арр

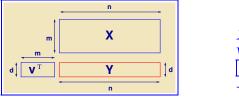
11-12

(articles) – SVDapp

Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, \dots, x_n]$, and d the dimension of the desired reduced space Y.

Want: a linear transformation from X to Y



> m-dimens. objects (x_i) 'flattened' to d-dimens. space (y_i)

Problem: Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints

11-13 Show that $\bar{X} = X(I - \frac{1}{n}ee^T)$ (here e = vector of all ones). What does the projector $(I - \frac{1}{n}ee^T)$ do?

Show that solution V also minimizes 'reconstruction error' ...

$$\sum_{i} \|ar{x}_{i} - VV^{T}ar{x}_{i}\|^{2} = \sum_{i} \|ar{x}_{i} - Var{y}_{i}\|^{2}$$

🗖 .. and that it also maximizes $\sum_{i,j} \|y_i - y_j\|^2$

11-15

Principal Component Analysis (PCA)

> PCA: find V (orthogonal) so that projected data $Y = V^T X$ has maximum variance

> Maximize over all orthogonal $m \times d$ matrices V:

$$\sum_{i} \left\| y_{i} - \frac{1}{n} \sum_{j} y_{j} \right\|_{2}^{2} = \dots = \operatorname{Tr} \left[V^{\top} \bar{X} \bar{X}^{\top} V \right]$$

Where: $\bar{X} = [\bar{x}_1, \cdots, \bar{x}_n]$ with $\bar{x}_i = x_i - \mu$, μ = mean.

Solution: $V = \{$ dominant eigenvectors $\}$ of covariance matrix

 \blacktriangleright i.e., Optimal V = Set of left singular vectors of \overline{X} associated with d largest singular values.

```
11-14
```

11-16

(articles) - SVDapp

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

	given data				predictions				
movie	Paul	Jane	Ann	Paul	Jane	Ann			
Title-1	-1	3	-1	-1.2	1.7	-0.7			
Title-2	4	х	3	2.8	-1.2	2.5			
Title-3	-3	1	-4	-2.7	1.0	-2.5			
Title-4	x	-1	-1	-0.5	-0.3	-0.6			
Title-5	3	-2	1	1.8	-1.4	1.4			
Title-6	-2	3	х	-1.6	1.8	-1.2			
		A		X					
> Minimize $ (X - A)_{\text{mask}} _F^2 + \mu X _*$									

"minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."

(articles) - SVDapp

(articles) - SVDapp

(articles) - SVDapp