EIGENVALUE PROBLEMS

- Background and review on eigenvalue problems
- Diagonalizable matrices
- The Schur form
- Localization of eigenvalues - Gerschgorin's theorem
- Perturbation analysis, condition numbers..

Eigenvalue Problems. Introduction

Let \boldsymbol{A} an $\boldsymbol{n} \times \boldsymbol{n}$ real nonsymmetric matrix. The eigenvalue problem:

$$
\begin{array}{ll}
A x=\lambda x & \lambda \in \mathbb{C}: \text { eigenvalue } \\
& x \in \mathbb{C}^{n}: \text { eigenvector }
\end{array}
$$

Types of Problems:

- Compute a few $\boldsymbol{\lambda}_{i}$'s with smallest or largest real parts;
- Compute all $\boldsymbol{\lambda}_{i}$'s in a certain region of \mathbb{C};
- Compute a few of the dominant eigenvalues;
- Compute all $\boldsymbol{\lambda}_{i}$'s.

Eigenvalue Problems. Their origins

- Structural Engineering [$K u=\lambda M u$]
- Stability analysis [e.g., electrical networks, mechanical system,..]
- Bifurcation analysis [e.g., in fluid flow]
- Electronic structure calculations [Schrödinger equation..]
- Applications of new era: page rank (of the world-wide web) and many types of dimension reduction (SVD instead of eigenvalues)

Basic definitions and properties

A complex scalar $\boldsymbol{\lambda}$ is called an eigenvalue of a square matrix \boldsymbol{A} if there exists a nonzero vector \boldsymbol{u} in \mathbb{C}^{n} such that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. The vector \boldsymbol{u} is called an eigenvector of \boldsymbol{A} associated with $\boldsymbol{\lambda}$. The set of all eigenvalues of \boldsymbol{A} is the 'spectrum' of \boldsymbol{A}. Notation: $\Lambda(A)$.
$>\boldsymbol{\lambda}$ is an eigenvalue iff the columns of $\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}$ are linearly dependent.
$>$... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector \boldsymbol{w} such that

$$
w^{H}(A-\lambda I)=0
$$

$>\boldsymbol{w}$ is a left eigenvector of $\boldsymbol{A}(\boldsymbol{u}=$ right eigenvector $)$
$>\lambda$ is an eigenvalue iff $\operatorname{det}(\boldsymbol{A}-\lambda I)=0$

Basic definitions and properties (cont.)

$>$ An eigenvalue is a root of the Characteristic polynomial:

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)
$$

$>$ So there are n eigenvalues (counted with their multiplicities).
$>$ The multiplicity of these eigenvalues as roots of $\boldsymbol{p}_{\boldsymbol{A}}$ are called algebraic multiplicities.
$>$ The geometric multiplicity of an eigenvalue $\boldsymbol{\lambda}_{i}$ is the number of linearly independent eigenvectors associated with $\boldsymbol{\lambda}_{i}$.
$>$ Geometric multiplicity is \leq algebraic multiplicity.
$>$ An eigenvalue is simple if its (algebraic) multiplicity is one.
$>$ It is semi-simple if its geometric and algebraic multiplicities are equal.
-1 Consider

$$
A=\left(\begin{array}{ccc}
1 & 2 & -4 \\
0 & 1 & 2 \\
0 & 0 & 2
\end{array}\right)
$$

Eigenvalues of \boldsymbol{A} ? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?
\Perp_{2} Same questions if a_{33} is replaced by one.
α_{0} Same questions if, in addition, a_{12} is replaced by zero.
$>$ Two matrices \boldsymbol{A} and \boldsymbol{B} are similar if there exists a nonsingular matrix \boldsymbol{X} such that

$$
A=X B X^{-1}
$$

$>A v=\lambda v \Longleftrightarrow B\left(X^{-1} v\right)=\lambda\left(X^{-1} v\right)$ eigenvalues remain the same, eigenvectors transformed.
$>$ Issue: find \boldsymbol{X} so that \boldsymbol{B} has a simple structure
Definition: \boldsymbol{A} is diagonalizable if it is similar to a diagonal matrix
$>$ THEOREM: A matrix is diagonalizable iff it has \boldsymbol{n} linearly independent eigenvectors
$>\ldots$ iff all its eigenvalues are semi-simple
$>\ldots$ iff its eigenvectors form a basis of \mathbb{R}^{n}

Transformations that preserve eigenvectors

Shift
$B=A-\sigma I: A v=\lambda v \Longleftrightarrow B v=(\lambda-\sigma) v$
eigenvalues move, eigenvectors remain the same.
Polynomial $B=p(A)=\alpha_{0} I+\cdots+\alpha_{n} A^{n}: A v=\lambda v \Longleftrightarrow B v=p(\lambda) v$ eigenvalues transformed, eigenvectors remain the same.

Invert

$$
B=A^{-1}: A v=\lambda v \Longleftrightarrow B v=\lambda^{-1} v
$$

eigenvalues inverted, eigenvectors remain the same.
Shift \&
$B=(A-\sigma I)^{-1}: A v=\lambda v \Longleftrightarrow B v=(\lambda-\sigma)^{-1} v$
Invert

THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any \boldsymbol{A} there exists a unitary matrix Q and an upper triangular matrix \boldsymbol{R} such that

$$
A=Q R Q^{H}
$$

>Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal).
> It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix R
$>$ Eigenvectors can be obtained by back-solving

Schur Form - Proof

هu4 Show that there is at least one eigenvalue and eigenvector of $\boldsymbol{A}: ~ \boldsymbol{A x}=\lambda \boldsymbol{x}$, with $\|x\|_{2}=1$
$\alpha_{5} 5$ There is a unitary transformation P such that $\boldsymbol{P} x=e_{1}$. How do you define P ?
*06 Show that $P A P^{H}=\left(\begin{array}{l|l}\boldsymbol{\lambda} & * * \\ \hline 0 & \boldsymbol{A}_{2}\end{array}\right)$.
$\boldsymbol{\alpha}_{0} 7$ Apply process recursively to \boldsymbol{A}_{2}.
\$8 What happens if \boldsymbol{A} is Hermitian?
*0 Another proof altogether: use Jordan form of \boldsymbol{A} and QR factorization

Localization theorems and perturbation analysis

> Localization: where are the eigenvalues located in \mathbb{C} ?
$>$ Perturbation analysis: If \boldsymbol{A} is perturbed how does an eigenvalue change? How about an eigenvector?
> Also: sensitivity of an eigenvalue to perturbations
$>$ Next result is a "localization" theorem
$>$ We have seen one such result before. Let $\|\cdot\|$ be a matrix norm.

Then:

$$
\forall \lambda \in \Lambda(A):|\lambda| \leq\|A\|
$$

$>$ All eigenvalues are located in a disk of radius $\|\boldsymbol{A}\|$ centered at 0 .
> More refined result: Gershgorin

THEOREM [Gershgorin]

$$
\forall \lambda \in \Lambda(A), \quad \exists i \text { such that } \quad\left|\lambda-a_{i i}\right| \leq \sum_{\substack{j=1 \\ j \neq i}}^{j=n}\left|a_{i j}\right|
$$

> In words: eigenvalue $\boldsymbol{\lambda}$ is located in one of the closed discs of the complex plane centered at $a_{i i}$ and with radius $\rho_{i}=\sum_{j \neq i}\left|a_{i j}\right|$.

Proof: By contradiction. If contrary is true then there is one eigenvalue $\boldsymbol{\lambda}$ that does not belong to any of the disks, i.e., such that $\left|\lambda-a_{i i}\right|>\rho_{i}$ for all i. Write matrix $A-\lambda I$ as:

$$
A-\lambda I=D-\lambda I-[D-A] \equiv(D-\lambda I)-F
$$

where \boldsymbol{D} is the diagonal of \boldsymbol{A} and $-\boldsymbol{F}=-(\boldsymbol{D}-\boldsymbol{A})$ is the matrix of off-diagonal entries. Now write

$$
A-\lambda I=(D-\lambda I)\left(I-(D-\lambda I)^{-1} F\right) .
$$

From assumptions we have $\left\|(D-\lambda I)^{-1} F\right\|_{\infty}<1$. (Show this). The Lemma in P. $5-3$ of notes would then show that $\boldsymbol{A}-\boldsymbol{\lambda I}$ is nonsingular - a contradiction \square

Gershgorin's theorem - example

10 Find a region of the complex plane where the eigenvalues of the following matrix are located:

$$
A=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 2 & 0 & 1 \\
-1 & -2 & -3 & 1 \\
\frac{1}{2} & \frac{1}{2} & 0 & -4
\end{array}\right)
$$

>Refinement: if disks are all disjoint then each of them contains one eigenvalue
$>$ Refinement: can combine row and column version of the theorem (column version: apply theorem to A^{H}).

Bauer-Fike theorem

THEOREM [Bauer-Fike] Let $\tilde{\lambda}, \tilde{u}$ be an approximate eigenpair with $\|\tilde{u}\|_{2}=1$, and let $r=\boldsymbol{A} \tilde{u}-\tilde{\lambda} \tilde{u}$ ('residual vector'). Assume \boldsymbol{A} is diagonalizable: $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1}$, with \boldsymbol{D} diagonal. Then

$$
\exists \lambda \in \Lambda(A) \text { such that }|\lambda-\tilde{\lambda}| \leq \operatorname{cond}_{2}(X)\|r\|_{2} .
$$

> Very restrictive result - also not too sharp in general.
$>$ Alternative formulation. If \boldsymbol{E} is a perturbation to \boldsymbol{A} then for any eigenvalue $\tilde{\lambda}$ of $\boldsymbol{A}+\boldsymbol{E}$ there is an eigenvalue $\boldsymbol{\lambda}$ of \boldsymbol{A} such that:

$$
|\lambda-\tilde{\lambda}| \leq \operatorname{cond}_{2}(\boldsymbol{X})\|\boldsymbol{E}\|_{2} .
$$

Conditioning of Eigenvalues

$>$ Assume that $\boldsymbol{\lambda}$ is a simple eigenvalue with right and left eigenvectors u and \boldsymbol{w}^{H} respectively. Consider the matrices:

$$
A(t)=A+t E
$$

Eigenvalue $\boldsymbol{\lambda}(\boldsymbol{t})$, Eigenvector $u(t)$.
$>$ Conditioning of $\boldsymbol{\lambda}$ of \boldsymbol{A} relative to E is $\left|\frac{d \lambda(t)}{d t}\right|_{t=0}$.
$>$ Write $\quad A(t) u(t)=\lambda(t) u(t) \quad$ Then multiply both sides to the left by w^{H} :

$$
\begin{aligned}
w^{H}(A+t E) u(t) & =\lambda(t) w^{H} u(t) \quad \rightarrow \\
\lambda(t) w^{H} u(t) & =w^{H} A u(t)+t w^{H} E u(t) \\
& =\lambda w^{H} u(t)+t w^{H} E u(t)
\end{aligned}
$$

$$
\rightarrow \quad \frac{\lambda(t)-\lambda}{t} w^{H} u(t)=w^{H} E u(t)
$$

$>$ Take the limit at $t=0$,

$$
\lambda^{\prime}(0)=\frac{\boldsymbol{w}^{H} \boldsymbol{E} \boldsymbol{u}}{\boldsymbol{w}^{H} \boldsymbol{u}}
$$

$>$ Note: the left and right eigenvectors associated with a simple eigenvalue cannot be orthogonal to each other.
$>$ Actual conditioning of an eigenvalue, given a perturbation "in the direction of \boldsymbol{E} " is $\left|\lambda^{\prime}(0)\right|$.
$>$ In practice only estimate of $\|E\|$ is available, so

$$
\left|\lambda^{\prime}(0)\right| \leq \frac{\|\boldsymbol{E} \boldsymbol{u}\|_{2}\|\boldsymbol{w}\|_{2}}{|(\boldsymbol{u}, \boldsymbol{w})|} \leq\|\boldsymbol{E}\|_{2} \frac{\|u\|_{2}\|w\|_{2}}{|(u, w)|}
$$

Definition. The condition number of a simple eigenvalue $\boldsymbol{\lambda}$ of an arbitrary matrix \boldsymbol{A} is defined by

$$
\operatorname{cond}(\lambda)=\frac{1}{\cos \theta(u, w)}
$$

in which u and w^{H} are the right and left eigenvectors, respectively, associated with λ.

Example: Consider the matrix

$$
A=\left(\begin{array}{rrr}
-149 & -50 & -154 \\
537 & 180 & 546 \\
-27 & -9 & -25
\end{array}\right)
$$

$>\Lambda(A)=\{1,2,3\}$. Right and left eigenvectors associated with $\lambda_{1}=1$:

$$
u=\left(\begin{array}{r}
0.3162 \\
-0.9487 \\
0.0
\end{array}\right) \quad \text { and } \quad w=\left(\begin{array}{c}
0.6810 \\
0.2253 \\
0.6967
\end{array}\right)
$$

So:

$\operatorname{cond}\left(\lambda_{1}\right) \approx 603.64$

$>$ Perturbing a_{11} to -149.01 yields the spectrum:

$$
\{0.2287,3.2878,2.4735\}
$$

$>$ as expected..
$>$ For Hermitian (also normal matrices) every simple eigenvalue is well-conditioned, since cond $(\boldsymbol{\lambda})=1$.

Perturbations with Multiple Eigenvalues - Example

$>$ Consider $\quad A=\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$
$>$ Worst case perturbation is in 3,1 position: set $\boldsymbol{A}_{31}=\boldsymbol{\epsilon}$.
$>$ Eigenvalues of perturbed A are the roots of

$$
p(\mu)=(\mu-1)^{3}-4 \cdot \epsilon
$$

$>$ Roots:

$$
\mu_{k}=1+(4 \epsilon)^{1 / 3} e^{\frac{2 k i \pi}{3}}, \quad k=1,2,3
$$

$>$ Hence eigenvalues of perturbed A are $1+O(\sqrt[3]{\epsilon})$.
$>$ If index of eigenvalue (dimension of largest Jordan block) is k, then an $O(\epsilon)$ perturbation to \boldsymbol{A} leads to $O(\sqrt[k]{\epsilon})$ change in eigenvalue. Simple eigenvalue case corresponds to $k=1$.

