EIGENVALUE PROBLEMS	Eigenvalue Problems. Introduction	
Background and review on eigenvalue problems	Let A an $n imes n$ real nonsymmetric matrix. The eigenvalue problem:	
Diagonalizable matrices		
The Schur form	$Ax = \lambda x \qquad \qquad \lambda \in \mathbb{C} : \text{eigenvalue} \\ x \in \mathbb{C}^n : \text{eigenvector}$	
 Localization of eigenvalues - Gerschgorin's theorem 		
Perturbation analysis, condition numbers	Types of Problems:	
	• Compute a few λ_i 's with smallest or largest real parts;	
	• Compute all λ_i 's in a certain region of \mathbb{C} ;	
	Compute a few of the dominant eigenvalues;	
	• Compute all λ_i 's.	
	12-2 GvL 7.1-7.4,7.5.2 – EigenPart1	
Eigenvalue Problems. Their origins	Basic definitions and properties	
Eigenvalue Problems. Their origins• Structural Engineering $[Ku = \lambda Mu]$ • Stability analysis [e.g., electrical networks, mechanical system,]• Bifurcation analysis [e.g., in fluid flow]	Basic definitions and properties A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A . Notation: $\Lambda(A)$.	
 <i>Eigenvalue Problems. Their origins</i> Structural Engineering [Ku = λMu] Stability analysis [e.g., electrical networks, mechanical system,] Bifurcation analysis [e.g., in fluid flow] Electronic structure calculations [Schrödinger equation] Applications of new era: page rank (of the world-wide web) and many types of 	 Basic definitions and properties A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in Cⁿ such that Au = λu. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the 'spectrum' of A. Notation: Λ(A). λ is an eigenvalue iff the columns of A - λI are linearly dependent. 	
 <i>Eigenvalue Problems. Their origins</i> Structural Engineering [Ku = λMu] Stability analysis [e.g., electrical networks, mechanical system,] Bifurcation analysis [e.g., in fluid flow] Electronic structure calculations [Schrödinger equation] Applications of new era: page rank (of the world-wide web) and many types of dimension reduction (SVD instead of eigenvalues) 	 Basic definitions and properties A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in Cⁿ such that Au = λu. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the 'spectrum' of A. Notation: Λ(A). λ is an eigenvalue iff the columns of A - λI are linearly dependent. equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that w^H(A - λI) = 0 	
 <i>Eigenvalue Problems. Their origins</i> Structural Engineering [Ku = λMu] Stability analysis [e.g., electrical networks, mechanical system,] Bifurcation analysis [e.g., in fluid flow] Electronic structure calculations [Schrödinger equation] Applications of new era: page rank (of the world-wide web) and many types of dimension reduction (SVD instead of eigenvalues) 	 Basic definitions and properties A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in Cⁿ such that Au = λu. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the 'spectrum' of A. Notation: Λ(A). λ is an eigenvalue iff the columns of A - λI are linearly dependent. equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that w^H(A - λI) = 0 w is a left eigenvector of A (u= right eigenvector) 	
 Eigenvalue Problems. Their origins Structural Engineering [Ku = λMu] Stability analysis [e.g., electrical networks, mechanical system,] Bifurcation analysis [e.g., in fluid flow] Electronic structure calculations [Schrödinger equation] Applications of new era: page rank (of the world-wide web) and many types of dimension reduction (SVD instead of eigenvalues) 	 Basic definitions and properties A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in Cⁿ such that Au = λu. The vector u is called an eigenvector of A associated with λ. The set of all eigenvalues of A is the 'spectrum' of A. Notation: Λ(A). λ is an eigenvalue iff the columns of A - λI are linearly dependent. equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that w^H(A - λI) = 0 w is a left eigenvector of A (u= right eigenvector) λ is an eigenvalue iff det(A - λI) = 0 	

Basic definitions and properties (cont.)

> An eigenvalue is a root of the Characteristic polynomial:

$$p_A(\lambda) = \det(A - \lambda I)$$

> So there are n eigenvalues (counted with their multiplicities).

- > The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.
- > The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

- \blacktriangleright Geometric multiplicity is \leq algebraic multiplicity.
- > An eigenvalue is simple if its (algebraic) multiplicity is one.
- > It is semi-simple if its geometric and algebraic multiplicities are equal.

▲1 Consider

$$A = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Eigenvalues of *A*? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if a_{33} is replaced by one.

M₃ Same questions if, in addition, a_{12} is replaced by zero.

12-5 GvL 7.1-7.4,7.5.2 – Eige	enPart1 12-6	GvL 7.1-7.4,7.5.2 – EigenPart1
Two matrices A and B are similar if there exists a nonsingular matrix X such	h that Transfo	rmations that preserve eigenvectors
$A = XBX^{-1}$	Shift	$B = A - \sigma I$: $Av = \lambda v \iff Bv = (\lambda - \sigma)v$ eigenvalues move, eigenvectors remain the same.
► $Av = \lambda v \iff B(X^{-1}v) = \lambda(X^{-1}v)$ eigenvalues remain the same, eigenvectors transformed.	Polynomia	$B = p(A) = \alpha_0 I + \dots + \alpha_n A^n$: $Av = \lambda v \iff Bv = p(\lambda)v$ eigenvalues transformed, eigenvectors remain the same.
Issue: find X so that B has a simple structure Definition: A is diagonalizable if it is similar to a diagonal matrix	Invert	$B = A^{-1}$: $Av = \lambda v \iff Bv = \lambda^{-1}v$ eigenvalues inverted, eigenvectors remain the same.
> THEOREM: A matrix is diagonalizable iff it has n linearly independent eigenvectors	en- Shift & Invert	$B = (A - \sigma I)^{-1}$: $Av = \lambda v \iff Bv = (\lambda - \sigma)^{-1}v$ eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.
iff all its eigenvalues are semi-simple		
> iff its eigenvectors form a basis of \mathbb{R}^n 12-7 GvL 7.1-7.4,7.5.2 – Eigenvectors	enPart112-8	GvL 7.1-7.4,7.5.2 – EigenPart1

129Out 7.1-7.4.7.52 - EigenPart11210Out 7.1-7.4.7.52 - EigenPart1Localization theorems and perturbation analysisA localization: where are the eigenvalues located in C?> Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector? $\forall \lambda \in \Lambda(A), \exists i \text{ such that } \lambda - a_{ii} \leq \sum_{j=1}^{j=n} a_{ij} $.> Also: sensitivity of an eigenvalue to perturbations>> Next result is a "localization" theorem>> We have seen one such result before. Let $\ .\ $ be a matrix norm.Then: $\forall \lambda \in \Lambda(A) : \lambda \leq A $ > All eigenvalues are located in a disk of radius $ A $ centered at 0.1211	 Any Hermitian matrix is unitarily similar to a real diagonal matrix, (i.e. its Schur form is real diagonal). It is easy to read off the eigenvalues (including all the multiplicities) from the triangular matrix <i>R</i> Eigenvectors can be obtained by back-solving 	There is a unitary transformation P such that $Px = e_1$. How do you define P ? Show that $PAP^H = \left(\frac{\lambda}{0} \middle A_2\right)$. Apply process recursively to A_2 . B What happens if A is Hermitian? Another proof altogether: use Jordan form of A and QR factorization
Localization theorems and perturbation analysis> Localization: where are the eigenvalues located in C?> Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector?> Also: sensitivity of an eigenvalue to perturbations> Next result is a "localization" theorem> We have seen one such result before. Let $\ .\ $ be a matrix norm.Then: $\forall \lambda \in \Lambda(A) : \lambda \le \ A\ $ > All eigenvalues are located in a disk of radius $\ A\ $ centered at 0.12:11	12-9 GvL 7.1-7.4,7.5.2 - EigenPart1	12-10 GvL 7.1-7.4,7.5.2 – EigenPart1
> Localization: where are the eigenvalues located in \mathbb{C} ?THEOREM [Gershgorin]> Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector? $\forall \lambda \in \Lambda(A), \exists i$ such that $ \lambda - a_{ii} \leq \sum_{\substack{j=1 \\ j\neq i}}^{j=n} a_{ij} $.> Also: sensitivity of an eigenvalue to perturbations>> Next result is a "localization" theorem>> We have seen one such result before. Let $. $ be a matrix norm.Then: $\forall \lambda \in \Lambda(A) : \lambda \leq A $ > All eigenvalues are located in a disk of radius $ A $ centered at 0.12:11	Localization theorems and perturbation analysis	More refined result: Gershgorin
 Perturbation analysis: If <i>A</i> is perturbed how does an eigenvalue change? How about an eigenvector? Also: sensitivity of an eigenvalue to perturbations Next result is a "localization" theorem We have seen one such result before. Let . be a matrix norm. Then: $\forall \lambda \in \Lambda(A) : \lambda \leq A$ All eigenvalues are located in a disk of radius A centered at 0. <u>1211</u> Gvt 7.1-74,7.52 - EigenPart1 <u>1212</u> Gvt 7.1-74,7.52 - EigenPart1 	> Localization: where are the eigenvalues located in \mathbb{C} ?	THEOREM [Gershgorin]
> Also: sensitivity of an eigenvalue to perturbations > Next result is a "localization" theorem > We have seen one such result before. Let $. $ be a matrix norm. Then: $\forall \lambda \in \Lambda(A) : \lambda \le A $ > All eigenvalues are located in a disk of radius $ A $ centered at 0. 12-11 GvL 7.1-7.4,7.5.2 - EigenPart1 12-12 GvL 7.1-7.4,7.5.2 - EigenPart1	> Perturbation analysis: If A is perturbed how does an eigenvalue change? How about an eigenvector?	$orall \lambda \ \in \Lambda(A), \ \ \exists \ i \ \ ext{such that} \ \ \lambda-a_{ii} \leq \sum_{\substack{j=n \ i \neq i}}^{j=n} a_{ij} \ .$
> Next result is a "localization" theorem > In words: eigenvalue λ is located in one of the closed discs of the complex plane centered at a_{ii} and with radius $\rho_i = \sum_{j \neq i} a_{ij} $. > Me have seen one such result before. Let $\ .\ $ be a matrix norm. Then: $\forall \lambda \in \Lambda(A) : \lambda \leq \ A\ $ > All eigenvalues are located in a disk of radius $\ A\ $ centered at 0. 12-11 GvL 7.1-7.4,7.5.2 - EigenPart1 12-12 GvL 7.1-7.4,7.5.2 - EigenPart1	Also: sensitivity of an eigenvalue to perturbations	$J \neq i$
> We have seen one such result before. Let $\ .\ $ be a matrix norm. Then: $\forall \lambda \in \Lambda(A) : \lambda \le A $ > All eigenvalues are located in a disk of radius $ A $ centered at 0. 12:11	Next result is a "localization" theorem	> In words: eigenvalue λ is located in one of the closed discs of the complex plane
Then: $\forall \lambda \in \Lambda(A) : \lambda \le A $ > All eigenvalues are located in a disk of radius $ A $ centered at 0. 12-11	> We have seen one such result before. Let $\ \cdot\ $ be a matrix norm.	centered at a_{ii} and with radius $ ho_i \ = \ \sum_{j \ eq \ i} a_{ij} $.
> All eigenvalues are located in a disk of radius A centered at 0. 12-11	Then: $orall \lambda \in \Lambda(A): \lambda \leq \ A\ $	
I2-11 GvL 7.1-7.4,7.5.2 - EigenPart1 I2-12 GvL 7.1-7.4,7.5.2 - EigenPart1	> All eigenvalues are located in a disk of radius $ A $ centered at 0.	
	12-11 GvL 7.1-7.4,7.5.2 – EigenPart1	12-12 GvL 7.1-7.4,7.5.2 – EigenPart1

> THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix, i.e., for any A there exists a unitary matrix Q and an upper triangular matrix Rsuch that

 $A = QRQ^H$

Schur Form – Proof

And Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$, with $\|x\|_2 = 1$

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $ \lambda - a_{ii} > \rho_i$ for all i . Write matrix $A - \lambda I$ as: $A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$ where D is the diagonal of A and $-F = -(D - A)$ is the matrix of off-diagonal entries. Now write $A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$ From assumptions we have $ (D - \lambda I)^{-1}F _{\infty} < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction \Box	Gershgorin's theorem - exampleImage: Second Se
GvL 7.1-7.4,7.5.2 – EigenPart1	12-14 GvL 7.1-7.4,7.5.2 – EigenPart1
Bauer-Fike theoremTHEOREM [Bauer-Fike] Let $\tilde{\lambda}$, \tilde{u} be an approximate eigenpair with $\ \tilde{u}\ _2 = 1$, and let $r = A\tilde{u} - \tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A = XDX^{-1}$, with D diagonal. Then $\exists \lambda \in \Lambda(A)$ such that $ \lambda - \tilde{\lambda} \leq \text{cond}_2(X) \ r\ _2$.	Conditioning of Eigenvalues> Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices: $A(t) = A + tE$ Eigenvalue $\lambda(t)$, Eigenvector $u(t)$.
 Very restrictive result - also not too sharp in general. Alternative formulation. If <i>E</i> is a perturbation to <i>A</i> then for any eigenvalue λ̃ of <i>A</i> + <i>E</i> there is an eigenvalue λ of <i>A</i> such that: λ − λ̃ ≤ cond₂(<i>X</i>) <i>E</i> ₂. 	$ \begin{array}{l} \succ \text{ Conditioning of } \lambda \text{ of } A \text{ relative to } E \text{ is } \left \frac{d\lambda(t)}{dt} \right _{t=0} \text{.} \\ \end{matrix} \\ \begin{array}{l} \succ \text{ Write } A(t)u(t) = \lambda(t)u(t) \text{ Then multiply both sides to the left by } w^H \text{:} \\ w^H(A + tE)u(t) = \lambda(t)w^Hu(t) \rightarrow \\ \lambda(t)w^Hu(t) = w^HAu(t) + tw^HEu(t) \\ = \lambda w^Hu(t) + tw^HEu(t). \end{array} $
12-15 GvL 7.1-7.4,7.5.2 – EigenPart1	12-16 GvL 7.1-7.4,7.5.2 – EigenPart1

So: