Symmetric Eigenvalue Problems

- The symmetric eigenvalue problem: basic facts
- Min-Max theorem -
- Inertia of matrices
- Bisection algorithm

The symmetric eigenvalue problem: Basic facts

 \succ Consider the Schur form of a real symmetric matrix A:

 $A = QRQ^H$

Since $A^H = A$ then $R = R^H \triangleright$

Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, Q can be taken to be real when A is real.

$$(A-\lambda I)(u+iv)=0
ightarrow (A-\lambda I)u=0$$
 & $(A-\lambda I)v=0$

> Can select eigenvector to be either u or v, whichever is $\neq 0$.

GvL 8.1-8.2.3 – EigenPart2

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$

The eigenvalues of a Hermitian matrix A are characterized by the relation

$$\lambda_k = \max_{S, ext{ dim}(S) = k} \quad \min_{x \in S, x
eq 0} \; \; rac{(Ax, x)}{(x, x)}$$

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is an orthonormal basis of eigenvectors u_1, u_2, \dots, u_n . Express any vector x in this basis as $x = \sum_{i=1}^n \alpha_i u_i$. Then : $(Ax, x)/(x, x) = [\sum \lambda_i |\alpha_i|^2]/[\sum |\alpha_i|^2]$.

(a) Let S be any subspace of dimension k and let $\mathcal{W} = \operatorname{span}\{u_k, u_{k+1}, \cdots, u_n\}$. A dimension argument (used before) shows that $S \cap \mathcal{W} \neq \{0\}$. So there is a non-zero x_w in $S \cap \mathcal{W}$.

13-3

Express this x_w in the eigenbasis as $x_w = \sum_{i=k}^n \alpha_i u_i$. Then since $\lambda_i \leq \lambda_k$ for $i \geq k$ we have:

$$rac{\lambda_i |lpha_i|^2}{\lambda_i |lpha_i|^2} = rac{\sum_{i=k}^n \lambda_i |lpha_i|^2}{\sum_{i=k}^n |lpha_i|^2} \leq \lambda_k \, .$$

Thus, for any subspace S of dim. k we have $\min_{x\in S, x
eq 0}(Ax,x)/(x,x)\leq \lambda_k$.

(b) We now take $S_* = \text{span}\{u_1, u_2, \dots, u_k\}$. Since $\lambda_i \ge \lambda_k$ for $i \le k$, for this particular subspace we have:

$$\min_{x \ \in \ S_*, \ x
eq 0} rac{(Ax,x)}{(x,x)} = \min_{x \ \in \ S_*, \ x
eq 0} rac{\sum_{i=1}^k \lambda_i |lpha_i|^2}{\sum_{i=k}^n |lpha_i|^2} = \lambda_k.$$

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of $\min_{x \in S, x \neq 0} (Ax, x)/(x, x)$ is equal to λ_k

$$\lambda_1 = \max_{x
eq 0} rac{(Ax,x)}{(x,x)} \qquad \lambda_n = \min_{x
eq 0} rac{(Ax,x)}{(x,x)}$$

Actually 4 versions of the same theorem. 2nd version:

$$\lambda_k = \min_{S, ext{ dim}(S) = n-k+1} \quad \max_{x \in S, x
eq 0} \; rac{(Ax,x)}{(x,x)}$$

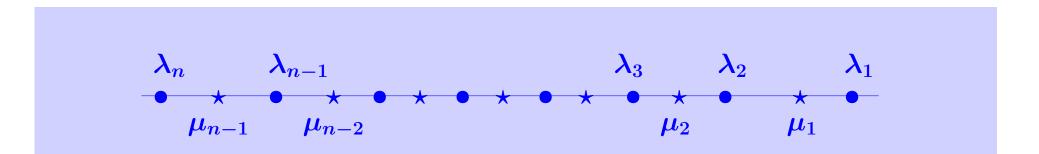
Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.

2 Use the min-max theorem to show that $||A||_2 = \sigma_1(A)$ - the largest singular value of A.

> Interlacing Theorem: Denote the $k \times k$ principal submatrix of A as A_k , with eigenvalues $\{\lambda_i^{[k]}\}_{i=1}^k$. Then

$$\lambda_1^{[k]} \geq \lambda_1^{[k-1]} \geq \lambda_2^{[k]} \geq \lambda_2^{[k-1]} \geq \cdots \lambda_{k-1}^{[k-1]} \geq \lambda_k^{[k]}$$

Example: λ_i 's = eigenvalues of A, μ_i 's = eigenvalues of A_{n-1} :



► Many uses.

> For example: interlacing theorem for roots of orthogonal polynomials

The Law of inertia (real symmetric matrices)

lnertia of a matrix = [m, z, p] with m = number of < 0 eigenvalues, z = number of zero eigenvalues, and p = number of > 0 eigenvalues.

Sylvester's Law of inertia:

If $X \in \mathbb{R}^{n imes n}$ is nonsingular, then A and $X^T A X$ have the same inertia.

Terminology: $X^T A X$ is congruent to A

Suppose that $A = LDL^T$ where L is unit lower triangular, and D diagonal. How many negative eigenvalues does A have?

Assume that A is tridiagonal. How many operations are required to determine the number of negative eigenvalues of A?

Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.

Let $F \in \mathbb{R}^{m \times n}$, with n < m, and F of rank n. What is the inertia of the matrix on the right: [Hint: use a block LU factorization]

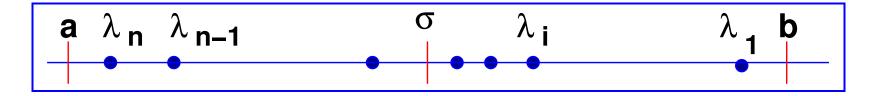
$$\begin{pmatrix} \boldsymbol{I} & \boldsymbol{F} \\ \boldsymbol{F}^T & \boldsymbol{0} \end{pmatrix}$$

> Note 1: Converse result also true: If A and B have same inertia they are congruent. [This part is easy to show]

Note 2: result also true for (complex) Hermitian matrices ($X^H A X$ has same inertia as A).

Bisection algorithm for tridiagonal matrices:

- \succ Goal: to compute *i*-th eigenvalue of A (tridiagonal)
- ► Get interval [a, b] containing spectrum [Gerschgorin]: $a \leq \lambda_n \leq \cdots \leq \lambda_1 \leq b$
- Let $\sigma = (a + b)/2$ = middle of interval
- ► Calculate p = number of positive eigenvalues of $A \sigma I$
 - If $p \geq i$ then $\lambda_i \in \ (\sigma, \ b] \rightarrow \quad ext{set} \ a := \sigma$



- Else then $\lambda_i \in \ [a, \ \sigma] o \$ set $b:=\sigma$
- > Repeat until b a is small enough.