Symmetric Eigenvalue Problems

- The symmetric eigenvalue problem: basic facts
- Min-Max theorem -
- Inertia of matrices
- Bisection algorithm

The symmetric eigenvalue problem: Basic facts

$>$ Consider the Schur form of a real symmetric matrix \boldsymbol{A} :

$$
A=Q R Q^{H}
$$

Since $\boldsymbol{A}^{H}=\boldsymbol{A}$ then $\boldsymbol{R}=\boldsymbol{R}^{\boldsymbol{H}}>$

Eigenvalues of \boldsymbol{A} are real

and

There is an orthonormal basis of eigenvectors of \boldsymbol{A}

In addition, Q can be taken to be real when \boldsymbol{A} is real.

$$
(A-\lambda I)(u+i v)=0 \rightarrow(A-\lambda I) u=0 \&(A-\lambda I) v=0
$$

$>$ Can select eigenvector to be either u or v, whichever is $\neq 0$.
13.2 2
$>$ Express this x_{w} in the eigenbasis as $x_{w}=\sum_{i=k}^{n} \boldsymbol{\alpha}_{i} \boldsymbol{u}_{i}$. Then since $\boldsymbol{\lambda}_{i} \leq \boldsymbol{\lambda}_{k}$ for $i \geq k$ we have:

$$
\frac{\left(A x_{w}, x_{w}\right)}{\left(x_{w}, x_{w}\right)}=\frac{\sum_{i=k}^{n} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=k}^{n}\left|\alpha_{i}\right|^{2}} \leq \lambda_{k}
$$

Thus, for any subspace S of dim. k we have $\min _{x \in S, x \neq 0}(A x, x) /(x, x) \leq \lambda_{k}$.
(b) We now take $S_{*}=\operatorname{span}\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$. Since $\lambda_{i} \geq \lambda_{k}$ for $i \leq k$, for this particular subspace we have:

$$
\min _{x \in S_{*}, x \neq 0} \frac{(A x, x)}{(x, x)}=\min _{x \in S_{*}, x \neq 0} \frac{\sum_{i=1}^{k} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=k}^{n}\left|\alpha_{i}\right|^{2}}=\lambda_{k}
$$

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of $\min _{x \in S, x \neq 0}(A x, x) /(x, x)$ is equal to λ_{k}
(a) Let S be any subspace of dimension k and let $\mathcal{W}=\operatorname{span}\left\{u_{k}, u_{k+1}, \cdots, u_{n}\right\}$. A dimension argument (used before) shows that $S \cap \mathcal{W} \neq\{0\}$. So there is a non-zero x_{w} in $S \cap \mathcal{W}$.
> Consequences:

$$
\lambda_{1}=\max _{x \neq 0} \frac{(A x, x)}{(x, x)} \quad \lambda_{n}=\min _{x \neq 0} \frac{(A x, x)}{(x, x)}
$$

>Actually 4 versions of the same theorem. 2nd version:

$$
\lambda_{k}=\min _{S, \operatorname{dim}(S)=n-k+1} \max _{x \in S, x \neq 0} \frac{(A x, x)}{(x, x)}
$$

$>$ Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.

Write down all 4 versions of the theoremUse the min-max theorem to show that $\|A\|_{2}=\sigma_{1}(\boldsymbol{A})$ - the largest singular value of A.

GvL 8.1-8.2.3-EigenPart2

The Law of inertia (real symmetric matrices)

$>$ Inertia of a matrix $=[\mathrm{m}, \mathrm{z}, \mathrm{p}]$ with $m=$ number of <0 eigenvalues, $z=$ number of zero eigenvalues, and $p=$ number of >0 eigenvalues.

> | If $\boldsymbol{X} \in \mathbb{R}^{n \times n}$ is nonsingular, then \boldsymbol{A} and |
| :--- | :--- | :--- |
| $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$ have the same inertia. |

$>$ Terminology: $\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}$ is congruent to \boldsymbol{A}
\&3) Suppose that $\boldsymbol{A}=L D L^{T}$ where L is unit lower triangular, and D diagonal. How many negative eigenvalues does \boldsymbol{A} have?
Δ_{4} Assume that \boldsymbol{A} is tridiagonal. How many operations are required to determine the number of negative eigenvalues of \boldsymbol{A} ?
$>$ Interlacing Theorem: Denote the $k \times k$ principal submatrix of A as A_{k}, with eigenvalues $\left\{\lambda_{i}^{[k]}\right\}_{i=1}^{k}$. Then

$$
\lambda_{1}^{[k]} \geq \lambda_{1}^{[k-1]} \geq \lambda_{2}^{[k]} \geq \lambda_{2}^{[k-1]} \geq \cdots \lambda_{k-1}^{[k-1]} \geq \lambda_{k}^{[k]}
$$

Example: λ_{i} 's $=$ eigenvalues of A, μ_{i} 's $=$ eigenvalues of A_{n-1} :

> Many uses.
$>$ For example: interlacing theorem for roots of orthogonal polynomials
$\boxed{\infty}$ Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.Let $\boldsymbol{F} \in \mathbb{R}^{m \times n}$, with $\boldsymbol{n}<\boldsymbol{m}$, and \boldsymbol{F} of rank \boldsymbol{n}.
What is the inertia of the matrix on the right:
[Hint: use a block LU factorization]

$$
\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & 0
\end{array}\right)
$$

$>$ Note 1: Converse result also true: If \boldsymbol{A} and \boldsymbol{B} have same inertia they are congruent. [This part is easy to show]
$>$ Note 2: result also true for (complex) Hermitian matrices $\left(\boldsymbol{X}^{H} \boldsymbol{A} \boldsymbol{X}\right.$ has same inertia as \boldsymbol{A}).

Bisection algorithm for tridiagonal matrices:

$>$ Goal: to compute \boldsymbol{i}-th eigenvalue of \boldsymbol{A} (tridiagonal)
$>$ Get interval $[a, b]$ containing spectrum [Gerschgorin]: $a \leq \lambda_{n} \leq \cdots \leq \lambda_{1} \leq b$
$>$ Let $\sigma=(a+b) / 2=$ middle of interval
$>$ Calculate $p=$ number of positive eigenvalues of $A-\sigma I$

- If $p \geq i$ then $\lambda_{i} \in(\sigma, b] \rightarrow \quad$ set $a:=\sigma$

- Else then $\lambda_{i} \in[a, \sigma] \rightarrow$ set $b:=\sigma$
$>$ Repeat until $\boldsymbol{b}-\boldsymbol{a}$ is small enough.
$\xrightarrow{13-9}$

