
ALGORITHMS FOR EIGENVALUE PROBLEMS

• The Power method

• The QR algorithm

• Practical QR algorithms: use of Hessenberg form and shifts

• The symmetric QR method

• The Jacobi method

14-1

Basic algorithm: The power method

ä Basic idea is to generate the sequence of vectors Akv0 where v0 6= 0 – then
normalize.

ä Most commonly used normalization: ensure that the largest component of the
approximation is equal to one.

The Power Method
1. Choose a nonzero initial vector v(0).
2. For k = 1, 2, . . . , until convergence, Do:
3. αk = argmaxi=1,...,n|(Av(k−1))i|
4. v(k) = 1

αk
Av(k−1)

5. EndDo

ä argmaxi=1,..,n|xi| ≡ the component xi with largest modulus
14-2 GvL 8.1-8.2.3 – EigenPart3

14-2

Convergence of the power method

THEOREM Assume there is one eigenvalue λ1 of A, s.t. |λ1| > |λj|, for j 6= i,
and that λ1 is semi-simple. Then either the initial vector v(0) has no component
in Null(A − λ1I) or v(k) converges to an eigenvector associated with λ1 and
αk → λ1.

Proof in the diagonalizable case.

ä v(k) is = vector Akv(0) normalized by a certain scalar α̂k in such a way that its
largest component is 1.

ä Decompose initial vector v(0) in the
eigenbasis as:

v(0) =
n∑
i=1

γiui

ä Each ui is an eigenvector associated with λi.
14-3 GvL 8.1-8.2.3 – EigenPart3

14-3

ä Note that Akui = λkiui

v(k) =
1

scaling
×

n∑
i=1

λkiγiui

=
1

scaling
×
[
λk1γ1u1 +

n∑
i=2

λkiγiui

]

=
1

scaling′
×
[
u1 +

n∑
i=2

(
λi

λ1

)k γi
γ1
ui

]
ä Second term inside bracket converges to zero. QED

ä Proof suggests that the convergence factor is given by

ρD =
|λ2|
|λ1|

where λ2 is the second largest eigenvalue in modulus.

14-4 GvL 8.1-8.2.3 – EigenPart3

14-4

Example: Consider a ‘Markov Chain’ matrix of size n = 55. Dominant eigen-
values are λ = 1 and λ = −1 ä the power method applied directly to A fails.
(Why?)

ä We can consider instead the matrix I + A The eigenvalue λ = 1 is then trans-
formed into the (only) dominant eigenvalue λ = 2

Iteration Norm of diff. Res. norm Eigenvalue
20 0.639D-01 0.276D-01 1.02591636
40 0.129D-01 0.513D-02 1.00680780
60 0.192D-02 0.808D-03 1.00102145
80 0.280D-03 0.121D-03 1.00014720

100 0.400D-04 0.174D-04 1.00002078
120 0.562D-05 0.247D-05 1.00000289
140 0.781D-06 0.344D-06 1.00000040
161 0.973D-07 0.430D-07 1.00000005

14-5 GvL 8.1-8.2.3 – EigenPart3

14-5

The Shifted Power Method

ä In previous example shifted A into B = A + I before applying power method.
We could also iterate with B(σ) = A+ σI for any positive σ

Example: With σ = 0.1 we get the following improvement.

Iteration Norm of diff. Res. Norm Eigenvalue
20 0.273D-01 0.794D-02 1.00524001
40 0.729D-03 0.210D-03 1.00016755
60 0.183D-04 0.509D-05 1.00000446
80 0.437D-06 0.118D-06 1.00000011
88 0.971D-07 0.261D-07 1.00000002

14-6 GvL 8.1-8.2.3 – EigenPart3

14-6

ä Question: What is the best shift-of-origin σ to use?

ä Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

λ1 > λ2 ≥ λ2 ≥ · · · ≥ λn,

Then: If we shift A to A− σI:

The shift σ that yields the best convergence factor is:

σopt =
λ2 + λn

2

-1 Plot a typical convergence factor φ(σ) as a function of σ. Determine the
minimum value and prove the above result.

14-7 GvL 8.1-8.2.3 – EigenPart3

14-7

Inverse Iteration

Observation: The eigenvectors of A and A−1 are identical.

ä Idea: use the power method on A−1.

ä Will compute the eigenvalues closest to zero.

ä Shift-and-invert Use power method on (A− σI)−1 .

ä will compute eigenvalues closest to σ.

ä Rayleigh-Quotient Iteration: use σ = vTAv
vTv

(best approximation to λ given v).

ä Advantages: fast convergence in general.

ä Drawbacks: need to factor A (or A− σI) into LU.

14-8 GvL 8.1-8.2.3 – EigenPart3

14-8

The QR algorithm

ä The most common method for solving small (dense) eigenvalue problems. The
basic algorithm:

QR algorithm (basic)

1. Until Convergence Do:
2. Compute the QR factorization A = QR

3. Set A := RQ

4. EndDo

ä “Until Convergence” means “UntilA becomes close enough to an upper triangular
matrix”

ä Note: Anew = RQ = QH(QR)Q = QHAQ

ä Anew is Unitarily similar to A → Spectrum does not change
14-9 GvL 8.1-8.2.3 – EigenPart3

14-9

ä Convergence analysis complicated – but insight: we are implicitly doing a QR
factorization of Ak:

QR-Factorize: Multiply backward:
Step 1 A0 = Q0R0 A1 = R0Q0

Step 2 A1 = Q1R1 A2 = R1Q1

Step 3: A2 = Q2R2 A3 = R2Q2 Then:

[Q0Q1Q2][R2R1R0] = Q0Q1A2R1R0

= Q0(Q1R1)(Q1R1)R0

= Q0A1A1R0, A1 = R0Q0→
= (Q0R0)︸ ︷︷ ︸

A

(Q0R0)︸ ︷︷ ︸
A

(Q0R0)︸ ︷︷ ︸
A

= A3

ä [Q0Q1Q2][R2R1R0] == QR factorization of A3

ä This helps analyze the algorithm (details skipped)

14-10 GvL 8.1-8.2.3 – EigenPart3

14-10

ä Above basic algorithm is never used as is in practice. Two variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix

14-11 GvL 8.1-8.2.3 – EigenPart3

14-11

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by

|λn|
|λn−1|

where we assume: |λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| > |λn|.

ä For simplicity we will consider the situation when all eigenvalues are real.

ä As k→∞ the last row (except a(k)
nn) converges to zero quickly ..

ä .. and a(k)
nn converges to eigenvalue of smallest magnitude.

14-12 GvL 8.1-8.2.3 – EigenPart3

14-12

A(k) =

. a

. a

. a

. a

. a

a a a a a a

ä Idea: Apply QR algorithm to A(k) − µI with µ = a(k)

nn. Note: eigenvalues of
A(k)− µI are shifted by µ (eigenvectors unchanged).→ Shift matrix by +µI after
iteration.

14-13 GvL 8.1-8.2.3 – EigenPart3

14-13

QR algorithm with shifts

1. Until row ain, 1 ≤ i < n converges to zero DO:
2. Obtain next shift (e.g. µ = ann)
3. A− µI = QR

5. Set A := RQ+ µI

6. EndDo

ä Convergence (of last row) is cubic at the limit! [for symmetric case]

14-14 GvL 8.1-8.2.3 – EigenPart3

14-14

ä Result of algorithm:

A(k) =

.

.

.

.

.

0 0 0 0 0 λn

ä Next step: deflate, i.e., apply above algorithm to (n− 1)× (n− 1) upper block.

14-15 GvL 8.1-8.2.3 – EigenPart3

14-15

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aij = 0 for i > j + 1

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmet-
ric form). Results in substantial savings: O(n2) flops per step instead of O(n3)

Transformation to Hessenberg form

ä Want H1AH
T
1 = H1AH1 to have the

form shown on the right

ä Consider the first step only on a 6×6 matrix

? ? ? ? ? ?

? ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

14-16 GvL 8.1-8.2.3 – EigenPart3

14-16

ä Choose aw inH1 = I−2wwT to make the first column have zeros from position
3 to n. So w1 = 0.

ä Apply to left: B = H1A

ä Apply to right: A1 = BH1.

Main observation: the Householder matrixH1 which transforms the columnA(2 :

n, 1) into e1 works only on rows 2 to n. When applying the transpose H1 to the
right of B = H1A, we observe that only columns 2 to n will be altered. So the
first column will retain the desired pattern (zeros below row 2).

ä Algorithm continues the same way for columns 2, ...,n− 2.

14-17 GvL 8.1-8.2.3 – EigenPart3

14-17

QR algorithm for Hessenberg matrices

ä Need the “Implicit Q theorem”

Suppose thatQTAQ is an unreduced upper Hessenberg matrix. Then columns 2

to n of Q are determined uniquely (up to signs) by the first column of Q.

ä In other words if V TAV = G and QTAQ = H are both Hessenberg and
V (:, 1) = Q(:, 1) then V (:, i) = ±Q(:, i) for i = 2 : n.

Implication: To compute Ai+1 = QT
i AQi we can:

ä Compute 1st column of Qi [== scalar×A(:, 1)]

ä Choose other columns so Qi = unitary, and Ai+1 = Hessenberg.

14-18 GvL 8.1-8.2.3 – EigenPart3

14-18

ä W’ll do this with Givens rotations:

Example: With n = 5 :
A =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

1. Choose G1 = G(1, 2, θ1) so that (GT

1A0)21 = 0

ä A1 = GT
1AG1 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

14-19 GvL 8.1-8.2.3 – EigenPart3

14-19

2. Choose G2 = G(2, 3, θ2) so that (GT
2A1)31 = 0

ä A2 = GT
2A1G2 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗
0 0 0 ∗ ∗

3. Choose G3 = G(3, 4, θ3) so that (GT

3A2)42 = 0

ä A3 = GT
3A2G3 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 + ∗ ∗

14-20

4. Choose G4 = G(4, 5, θ4) so that (GT
4A3)53 = 0

ä A4 = GT
4A3G4 =

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

ä Process known as “Bulge chasing”

ä Similar idea for the symmetric (tridiagonal) case

14-21 GvL 8.1-8.2.3 – EigenPart3

14-21

The QR algorithm for symmetric matrices

ä Most common approach used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

ä Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause

HAHT = A1

is symmetric and also of Hessenberg form ä it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

14-22 GvL 8.1-8.2.3 – EigenPart3

14-22

Practical method

ä How to implement the QR algorithm with shifts?

ä It is best to use Givens rotations – can do a shifted QR step without explicitly
shifting the matrix..

ä Two most popular shifts:

s = ann and s = smallest e.v. of A(n− 1 : n, n− 1 : n)

14-23 GvL 8.1-8.2.3 – EigenPart3

14-23

The Jacobi algorithm for symmetric matrices

ä Main idea: Rotation matrices of the form

J(p, q, θ) =

1 . . . 0 . . . 0 0
...
0 · · · c · · · s · · · 0
... · · ·
0 · · · −s · · · c · · · 0
... · · · ... · · · ... · · · ...
0 . . . 0 . . . 1

p

q

c = cos θ and s = sin θ are so that J(p, q, θ)TAJ(p, q, θ) has a zero in position
(p, q) (and also (q, p))

ä Frobenius norm of matrix is preserved – but diagonal elements become larger ä

convergence to a diagonal.

14-24 GvL 8.1-8.2.3 – EigenPart3

14-24

ä Let B = JTAJ (where J ≡ Jp,q,θ).

ä Look at 2× 2 matrix B([p, q], [p, q]) (matlab notation)

ä Keep in mind that apq = aqp and bpq = bqp

(
bpp bpq
bqp bqq

)
=

(
c −s
s c

)(
app apq
aqp aqq

)(
c s

−s c

)
= ...

=

[
c2app + s2aqq − 2sc apq (c2 − s2)apq − sc(aqq − app)

∗ c2aqq + s2app + 2sc apq

]

ä Want: (c2 − s2)apq − sc(aqq − app) = 0

14-25 GvL 8.1-8.2.3 – EigenPart3

14-25

c2 − s2

2sc
=
aqq − app

2apq
≡ τ

ä Letting t = s/c (= tan θ) → quad. equation

t2 + 2τt− 1 = 0

ä t = −τ ±
√
1 + τ 2 = 1

τ±
√
1+τ 2

ä Select sign to get a smaller t so θ ≤ π/4.

ä Then : c =
1

√
1 + t2

; s = c ∗ t

ä Implemented in matlab script jacrot(A,p,q) –

14-26 GvL 8.1-8.2.3 – EigenPart3

14-26

ä Define: AO = A− Diag(A)
≡ A ‘with its diagonal entries
replaced by zeros’

ä Observations: (1) Unitary transformations preserve ‖.‖F . (2) Only changes are in
rows and columns p and q.

ä Let B = JTAJ

(where J ≡ Jp,q,θ). Then:
a2
pp + a2

qq + 2a2
pq = b2pp + b2qq + 2b2pq = b2pp + b2qq

because bpq = 0. Then, a little calculation leads to:

‖BO‖2F = ‖B‖2F −
∑

b2ii = ‖A‖
2
F −

∑
b2ii

= ‖A‖2F −
∑

a2
ii +

∑
a2
ii −

∑
b2ii

= ‖AO‖2F + (a2
pp + a2

qq − b
2
pp − b

2
qq)

= ‖AO‖2F − 2a2
pq

14-27 GvL 8.1-8.2.3 – EigenPart3

14-27

ä ‖AO‖F will decrease from one step to the next.

-2 Let ‖AO‖I = maxi 6=j |aij|. Show that

‖AO‖F ≤
√
n(n− 1)‖AO‖I

-3 Use this to show convergence in the case when largest entry is zeroed at each
step.

14-28 GvL 8.1-8.2.3 – EigenPart3

14-28

