- The Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric QR method
- The Jacobi method

Basic algorithm: The power method

> Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.

► Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method1. Choose a nonzero initial vector $v^{(0)}$.2. For $k = 1, 2, \ldots$, until convergence, Do:3. $\alpha_k = \operatorname{argmax}_{i=1,\ldots,n} |(Av^{(k-1)})_i|$ 4. $v^{(k)} = \frac{1}{\alpha_k} Av^{(k-1)}$ 5. EndDo

 $ightarrow rgmax_{i=1,..,n} |\mathbf{x}_i| \equiv$ the component x_i with largest modulus

14-2

GvL 8.1-8.2.3 - EigenPart3

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in Null $(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \rightarrow \lambda_1$.

Proof in the diagonalizable case.

 $\succ v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.

> Decompose initial vector $v^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^n \gamma_i u_i$$

GvL 8.1-8.2.3 – EigenPart3

Each u_i is an eigenvector associated with λ_i .

14-3

 \blacktriangleright Note that $A^k u_i = \lambda_i^k u_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} \, imes \, \sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} \, imes \, \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i u_i
ight] \ &= rac{1}{scaling'} \, imes \, \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

Second term inside bracket converges to zero. QED

Proof suggests that the convergence factor is given by

$$ho_D=rac{|\lambda_2|}{|\lambda_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size n = 55. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1 \ge$ the power method applied directly to A fails. (Why?)

> We can consider instead the matrix I + A The eigenvalue $\lambda = 1$ is then transformed into the (only) dominant eigenvalue $\lambda = 2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

The Shifted Power Method

► In previous example shifted A into B = A + I before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	0.273D-01	0.794D-02	1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.00000011
88	0.971D-07	0.261D-07	1.0000002

• *Question:* What is the best shift-of-origin σ to use?

> Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

 $\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n,$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = rac{oldsymbol{\lambda}_2 + oldsymbol{\lambda}_n}{2}$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ . Determine the minimum value and prove the above result.

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- > Idea: use the power method on A^{-1} .
- > Will compute the eigenvalues closest to zero.
- Shift-and-invert Use power method on $(A \sigma I)^{-1}$.
- > will compute eigenvalues closest to σ .
- > Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).
- Advantages: fast convergence in general.
- > Drawbacks: need to factor A (or $A \sigma I$) into LU.

The QR algorithm

► The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR algorithm (basic)

- 1. Until Convergence Do:
- 2. Compute the QR factorization A = QR
- 3. Set A := RQ
- 4. EndDo

 \succ "Until Convergence" means "Until A becomes close enough to an upper triangular matrix"

► Note:
$$A_{new} = RQ = Q^H(QR)Q = Q^HAQ$$

 A_{new} is Unitarily similar to $A \rightarrow$ Spectrum does not change

GvL 8.1-8.2.3 – EigenPart3

> Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of A^k :

	QR-Factorize:	Multiply backward:
Step 1	$oldsymbol{A}_0 = oldsymbol{Q}_0 oldsymbol{R}_0$	$\boldsymbol{A}_1 = \boldsymbol{R}_0 \boldsymbol{Q}_0$
Step 2	$oldsymbol{A}_1 = oldsymbol{Q}_1 oldsymbol{R}_1$	$oldsymbol{A}_2 = oldsymbol{R}_1 oldsymbol{Q}_1$
Step 3:	$A_2=oldsymbol{Q}_2oldsymbol{R}_2$	$A_3 = R_2 Q_2$ Then:

 $egin{aligned} & [Q_0Q_1Q_2][R_2R_1R_0] \,=\, Q_0Q_1A_2R_1R_0 \ & =\, Q_0(Q_1R_1)(Q_1R_1)R_0 \ & =\, Q_0A_1A_1R_0, \qquad A_1=R_0Q_0
ightarrow \ & =\, \underbrace{(Q_0R_0)}_A \, \underbrace{(Q_0R_0)}_A \, \underbrace{(Q_0R_0)}_A \, \underbrace{(Q_0R_0)}_A \, =\, A^3 \ \end{aligned}$

 \blacktriangleright $[Q_0Q_1Q_2][R_2R_1R_0] == QR$ factorization of A^3

This helps analyze the algorithm (details skipped)

> Above basic algorithm is never used as is in practice. Two variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by

where we assume: $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_{n-1}| > |\lambda_n|.$

> For simplicity we will consider the situation when all eigenvalues are real.

- \blacktriangleright As $k
 ightarrow \infty$ the last row (except $a_{nn}^{(k)}$) converges to zero quickly ..
- > ... and $a_{nn}^{(k)}$ converges to eigenvalue of smallest magnitude.

► Idea: Apply QR algorithm to $A^{(k)} - \mu I$ with $\mu = a_{nn}^{(k)}$. Note: eigenvalues of $A^{(k)} - \mu I$ are shifted by μ (eigenvectors unchanged). \rightarrow Shift matrix by $+\mu I$ after iteration.

QR algorithm with shifts

- 1. Until row a_{in} , $1 \le i < n$ converges to zero DO:
- 2. Obtain next shift (e.g. $\mu = a_{nn}$)
- 3. $A \mu I = QR$
- 5. Set $A := RQ + \mu I$
- 6. EndDo

Convergence (of last row) is cubic at the limit! [for symmetric case]

> Next step: deflate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper block.

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

 $a_{ij} = 0$ for i > j+1

<u>Observation</u>: QR algorithm preserves Hessenberg form (and tridiagonal symmetric form). Results in substantial savings: $O(n^2)$ flops per step instead of $O(n^3)$

Transformation to Hessenberg form

> Want $H_1AH_1^T = H_1AH_1$ to have the form shown on the right

> Consider the first step only on a 6×6 matrix

(*	*	*	*	*	*
*	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*

14-16

► Choose a w in $H_1 = I - 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.

- > Apply to left: $B = H_1 A$
- > Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column A(2: n, 1) into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

> Algorithm continues the same way for columns 2, ..., n - 2.

Need the "Implicit Q theorem"

Suppose that $Q^T A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

▶ In other words if $V^T A V = G$ and $Q^T A Q = H$ are both Hessenberg and V(:, 1) = Q(:, 1) then $V(:, i) = \pm Q(:, i)$ for i = 2 : n.

Implication: To compute $A_{i+1} = Q_i^T A Q_i$ we can:

- **>** Compute 1st column of Q_i [== scalar $\times A(:, 1)$]
- > Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

W'll do this with Givens rotations:			*	*	*	*	*
			*	*	*	*	*
Transmin	With $oldsymbol{n}=oldsymbol{5}$:	A =	0	*	*	*	*
Example:			0	0	*	*	*
			0	0	0	*	*

1. Choose $G_1 = G(1, 2, \theta_1)$ so that $(G_1^T A_0)_{21} = 0$

2. Choose $G_2 = G(2, 3, \theta_2)$ so that $(G_2^T A_1)_{31} = 0$

$$\blacktriangleright A_2 = G_2^T A_1 G_2 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & + & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

3. Choose $G_3 = G(3, 4, \theta_3)$ so that $(G_3^T A_2)_{42} = 0$

$$\blacktriangleright A_3 = G_3^T A_2 G_3 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & + & * & * \end{pmatrix}$$

4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G_4^T A_3)_{53} = 0$

$$\blacktriangleright A_4 = G_4^T A_3 G_4 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

Process known as "Bulge chasing"

Similar idea for the symmetric (tridiagonal) case

The QR algorithm for symmetric matrices

Most common approach used : reduce to tridiagonal form and apply the QR algorithm with shifts.

Householder transformation to Hessenberg form yields a tridiagonal matrix because

$HAH^T = A_1$

is symmetric and also of Hessenberg form > it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

► How to implement the QR algorithm with shifts?

► It is best to use Givens rotations – can do a shifted QR step without explicitly shifting the matrix..

> Two most popular shifts:

 $s = a_{nn}$ and s = smallest e.v. of A(n - 1 : n, n - 1 : n)

The Jacobi algorithm for symmetric matrices

Main idea: Rotation matrices of the form

$$J(p,q, heta) = egin{pmatrix} 1 & \dots & 0 & \dots & 0 & 0 \ arepsilon & \ddots & arepsilon & arepsilon$$

 $c = \cos \theta$ and $s = \sin \theta$ are so that $J(p, q, \theta)^T A J(p, q, \theta)$ has a zero in position (p, q) (and also (q, p))

Frobenius norm of matrix is preserved – but diagonal elements become larger convergence to a diagonal.

- ► Let $B = J^T A J$ (where $J \equiv J_{p,q,\theta}$).
- Look at 2×2 matrix B([p,q], [p,q]) (matlab notation)
- \blacktriangleright Keep in mind that $a_{pq} = a_{qp}$ and $b_{pq} = b_{qp}$

$$egin{pmatrix} b_{pp} & b_{pq} \ b_{qp} & b_{qq} \end{pmatrix} &= egin{pmatrix} c & -s \ s & c \end{pmatrix} egin{pmatrix} a_{pp} & a_{pq} \ a_{qp} & a_{qq} \end{pmatrix} egin{pmatrix} c & s \ -s & c \end{pmatrix} = ... \ &= egin{pmatrix} rac{c^2 a_{pp} + s^2 a_{qq} - 2sc \ a_{pq} \ + s^2 a_{qq} - 2sc \ a_{pq} \ + s^2 a_{qq} + s^2 a_{pp} + 2sc \ a_{pq} \ \end{bmatrix}$$

► Want:

$$(c^2-s^2)a_{pq}-sc(a_{qq}-a_{pp})=0$$

GvL 8.1-8.2.3 – EigenPart3

$$rac{c^2-s^2}{2sc}=rac{a_{qq}-a_{pp}}{2a_{pq}}\equiv au$$

► Letting t = s/c (= tan θ) → quad. equation

$$t^2 + 2\tau t - 1 = 0$$

$$\blacktriangleright t = -\tau \pm \sqrt{1 + \tau^2} = \frac{1}{\tau \pm \sqrt{1 + \tau^2}}$$

> Select sign to get a smaller t so $\theta \leq \pi/4$.

> Then :
$$c = rac{1}{\sqrt{1+t^2}}; \quad s = c * t$$

Implemented in matlab script jacrot (A, p, q) -

> Define:
$$A_O = A - \text{Diag}(A)$$

 \equiv *A* 'with its diagonal entries replaced by zeros'

> Observations: (1) Unitary transformations preserve $\|.\|_F$. (2) Only changes are in rows and columns p and q.

► Let $B = J^T A J$ (where $J \equiv J_{p,q,\theta}$). Then: $a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2 = b_{pp}^2 + b_{qq}^2 + 2b_{pq}^2 = b_{pp}^2 + b_{qq}^2$ because $b_{pq} = 0$. Then, a little calculation leads to: $\|B_O\|_F^2 = \|B\|_F^2 - \sum b_{ii}^2 = \|A\|_F^2 - \sum b_{ii}^2$ $= \|A\|_F^2 - \sum a_{ii}^2 + \sum a_{ii}^2 - \sum b_{ii}^2$ $= \|A_O\|_F^2 + (a_{pp}^2 + a_{qq}^2 - b_{pp}^2 - b_{qq}^2)$ $= \|A_O\|_F^2 - 2a_{pq}^2$ $> ||A_O||_F$ will decrease from one step to the next.

Let $||A_O||_I = \max_{i \neq j} |a_{ij}|$. Show that

$$\|A_O\|_F \leq \sqrt{n(n-1)} \|A_O\|_I$$

Use this to show convergence in the case when largest entry is zeroed at each step.