ALGORITHMS FOR EIGENVALUE PROBLEMS

- The Power method
- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric QR method
- The Jacobi method

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in Null $(A-\lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \to \lambda_1$.

Proof in the diagonalizable case.

- $\triangleright v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.
- ightharpoonup Decompose initial vector $v^{(0)}$ in the eigenbasis as:

$$v^{(0)} = \sum_{i=1}^n \gamma_i u_i$$

 \triangleright Each u_i is an eigenvector associated with λ_i .

GvL 8.1-8.2.3 – EigenPart3

Basic algorithm: The power method

- \blacktriangleright Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0
 eq 0$ then normalize.
- Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

- 1. Choose a nonzero initial vector $v^{(0)}$.
- 2. For $k = 1, 2, \ldots$, until convergence, Do:
- 3. $\alpha_k = \operatorname{argmax}_{i=1,\dots,n} |(Av^{(k-1)})_i|$ 4. $v^{(k)} = \frac{1}{\alpha} Av^{(k-1)}$
- 5. EndDo
- ightharpoonup $rgmax_{i=1,..,n}|\mathbf{x}_i|$ \equiv the component x_i with largest modulus

GvL 8.1-8.2.3 - EigenPart3

ightharpoonup Note that $A^k u_i = \lambda_i^k u_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} imes \sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} imes \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i u_i
ight] \ &= rac{1}{scaling'} imes \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- Second term inside bracket converges to zero. QED
- Proof suggests that the convergence factor is given by

$$ho_D = rac{|\lambda_2|}{|\lambda_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

Example: Consider a 'Markov Chain' matrix of size n = 55. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1$ bethe power method applied directly to A fails. (Why?)

 \blacktriangleright We can consider instead the matrix I+A The eigenvalue $\lambda=1$ is then transformed into the (only) dominant eigenvalue $\lambda=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.00000005

GvL 8.1-8.2.3 - EigenPart3

- \triangleright Question: What is the best shift-of-origin σ to use?
- ➤ Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 > \lambda_2 > \cdots > \lambda_n$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ . Determine the minimum value and prove the above result.

The Shifted Power Method

 \triangleright In previous example shifted A into B = A + I before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	0.273D-01	0.794D-02	1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.00000011
88	0.971D-07	0.261D-07	1.00000002

GvL 8.1-8.2.3 - EigenPart3

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.

- \triangleright Idea: use the power method on A^{-1} .
- > Will compute the eigenvalues closest to zero.
- ightharpoonup Shift-and-invert Use power method on $(A \sigma I)^{-1}$
- \triangleright will compute eigenvalues closest to σ .
- **>** Rayleigh-Quotient Iteration: use $\sigma = \frac{v^T A v}{v^T v}$ (best approximation to λ given v).
- ➤ Advantages: fast convergence in general.
- ightharpoonup Drawbacks: need to factor A (or $A \sigma I$) into LU.

GvL 8.1-8.2.3 – EigenPart3

The QR algorithm

➤ The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR algorithm (basic)

- 1. Until Convergence Do:
- 2. Compute the QR factorization A = QR
- 3. Set A := RQ
- 4. EndDo
- ightharpoonup "Until Convergence" means "Until ${m A}$ becomes close enough to an upper triangular matrix"
- ightharpoonup Note: $A_{new}=RQ=Q^H(QR)Q=Q^HAQ$
- $ightharpoonup A_{new}$ is Unitarily similar to A
 ightharpoonup
 ightharpoonup
 m Spectrum does not change

14-9 ______ GvL 8.1-8.2.3 – EigenPart3

- ➤ Above basic algorithm is never used as is in practice. Two variations:
- (1) Use shift of origin and
- (2) Start by transforming A into an Hessenberg matrix

ightharpoonup Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of A^k :

QR-Factorize: Multiply backward: Step 1
$$A_0=Q_0R_0$$
 $A_1=R_0Q_0$ Step 2 $A_1=Q_1R_1$ $A_2=R_1Q_1$

Step 2
$$A_1=Q_1R_1$$
 $A_2=R_1Q_1$ Step 3: $A_2=Q_2R_2$ $A_3=R_2Q_2$ Then:

$$\begin{split} [Q_0Q_1Q_2][R_2R_1R_0] &= Q_0Q_1A_2R_1R_0 \\ &= Q_0(Q_1R_1)(Q_1R_1)R_0 \\ &= Q_0A_1A_1R_0, \qquad A_1 = R_0Q_0 \to \\ &= \underbrace{(Q_0R_0)}_{A}\underbrace{(Q_0R_0)}_{A}\underbrace{(Q_0R_0)}_{A} = A^3 \end{split}$$

- $ightharpoonup [Q_0Q_1Q_2][R_2R_1R_0] == QR$ factorization of A^3
- ➤ This helps analyze the algorithm (details skipped)

GvL 8.1-8.2.3 – EigenPart3

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by

$$rac{|\lambda_n|}{|\lambda_{n-1}|}$$

where we assume: $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_{n-1}| > |\lambda_n|$.

- For simplicity we will consider the situation when all eigenvalues are real.
- ightharpoonup As $k o\infty$ the last row (except $a_{nn}^{(k)}$) converges to zero quickly ..
- ightharpoonup .. and $a_{nn}^{(k)}$ converges to eigenvalue of smallest magnitude.

$$A^{(k)} = egin{pmatrix} & \cdot & \cdot & \cdot & \cdot & \cdot & a \ \cdot & \cdot & \cdot & \cdot & \cdot & a \ \cdot & \cdot & \cdot & \cdot & \cdot & a \ \cdot & \cdot & \cdot & \cdot & \cdot & a \ \hline & a & a & a & a & a & a \end{pmatrix}$$

▶ Idea: Apply QR algorithm to $A^{(k)} - \mu I$ with $\mu = a_{nn}^{(k)}$. Note: eigenvalues of $A^{(k)} - \mu I$ are shifted by μ (eigenvectors unchanged). \rightarrow Shift matrix by $+\mu I$ after iteration.

QR algorithm with shifts

- 1. Until row a_{in} , $1 \le i < n$ converges to zero DO:
- Obtain next shift (e.g. $\mu = a_{nn}$)
- 3. $A \mu I = QR$
- 5. Set $A := RQ + \mu I$
- 6. EndDo
- ➤ Convergence (of last row) is cubic at the limit! [for symmetric case]

GvL 8.1-8.2.3 - EigenPart3

GvL 8.1-8.2.3 - EigenPart3

Result of algorithm:

 \triangleright Next step: deflate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper block.

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$a_{ij} = 0$$
 for $i > j+1$

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmetric form). Results in substantial savings: $O(n^2)$ flops per step instead of $O(n^3)$

Transformation to Hessenberg form

- \triangleright Consider the first step only on a 6×6 matrix

GvL 8.1-8.2.3 - EigenPart3

- \triangleright Choose a w in $H_1 = I 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.
- ightharpoonup Apply to left: $B = H_1 A$
- \triangleright Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column A(2:n,1) into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1 A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

 \triangleright Algorithm continues the same way for columns 2, ..., n-2.

➤ W'll do this with Givens rotations:

Example: With n = 5:

 $A = egin{pmatrix} * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \end{pmatrix}$

1. Choose $G_1 = G(1, 2, \theta_1)$ so that $(G_1^T A_0)_{21} = 0$

OR algorithm for Hessenberg matrices

Need the "Implicit Q theorem"

Suppose that Q^TAQ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

 \triangleright In other words if $V^TAV = G$ and $Q^TAQ = H$ are both Hessenberg and V(:,1) = Q(:,1) then $V(:,i) = \pm Q(:,i)$ for i = 2:n.

Implication: To compute $A_{i+1} = Q_i^T A Q_i$ we can:

- \triangleright Compute 1st column of Q_i [== scalar $\times A(:,1)$]
- \triangleright Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

2. Choose $G_2 = G(2, 3, \theta_2)$ so that $(G_2^T A_1)_{31} = 0$

$$lackbox{ iny} A_2 = G_2^T A_1 G_2 = egin{pmatrix} * & * & * & * & * \ * & * & * & * & * \ 0 & * & * & * & * \ 0 & + & * & * & * \ 0 & 0 & 0 & * & * \end{pmatrix}$$

GvL 8.1-8.2.3 - EigenPart3

3. Choose $G_3 = G(3, 4, \theta_3)$ so that $(G_3^T A_2)_{42} = 0$

$$lackbrack A_3 = G_3^T A_2 G_3 = egin{pmatrix} * & * & * & * & * \ * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \ 0 & 0 & + & * & * \end{pmatrix}$$

GvL 8.1-8.2.3 - EigenPart3

4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G_4^T A_3)_{53} = 0$

$$lackbox{ iny} A_4 = G_4^T A_3 G_4 = egin{pmatrix} * & * & * & * & * \ * & * & * & * & * \ 0 & * & * & * & * \ 0 & 0 & * & * & * \ 0 & 0 & 0 & * & * \end{pmatrix}$$

- Process known as "Bulge chasing"
- ➤ Similar idea for the symmetric (tridiagonal) case

The QR algorithm for symmetric matrices

- ➤ Most common approach used : reduce to tridiagonal form and apply the QR algorithm with shifts.
- ➤ Householder transformation to Hessenberg form yields a tridiagonal matrix because

$$HAH^T = A_1$$

is symmetric and also of Hessenberg form ➤ it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

21 ______ GvL 8.1-8.2.3 – EigenPart3

Practical method

- ➤ How to implement the QR algorithm with shifts?
- ➤ It is best to use Givens rotations can do a shifted QR step without explicitly shifting the matrix..
- ➤ Two most popular shifts:

$$s=a_{nn}$$
 and $s=$ smallest e.v. of $A(n-1:n,n-1:n)$

GvL 8.1-8.2.3 - EigenPart3

The Jacobi algorithm for symmetric matrices

➤ Main idea: Rotation matrices of the form

$$J(p,q, heta) = egin{pmatrix} 1 & \dots & 0 & & \dots & 0 & 0 \ dots & \ddots & dots & dots & dots & dots \ 0 & \cdots & c & \cdots & s & \cdots & 0 \ dots & \cdots & dots & \ddots & dots & dots & dots \ 0 & \cdots & -s & \cdots & c & \cdots & 0 \ dots & \cdots & dots & \cdots & dots & \cdots & dots \ 0 & \cdots & 0 & & \cdots & dots \end{pmatrix} egin{pmatrix} p \ p \ q \ 0 & \cdots & -s & \cdots & c & \cdots & 0 \ dots & \cdots & dots & \cdots & dots \ 0 & \cdots & 0 & & \cdots & 1 \end{pmatrix}$$

 $c=\cos \theta$ and $s=\sin \theta$ are so that $J(p,q,\theta)^TAJ(p,q,\theta)$ has a zero in position (p,q) (and also (q,p))

➤ Frobenius norm of matrix is preserved – but diagonal elements become larger ➤ convergence to a diagonal.

14-24 ______ GvL 8.1-8.2.3 – EigenPart3

- ightharpoonup Let $B=J^TAJ$ (where $J\equiv J_{p,q,\theta}$).
- ightharpoonup Look at 2 imes 2 matrix B([p,q],[p,q]) (matlab notation)
- \blacktriangleright Keep in mind that $a_{pq}=a_{qp}$ and $b_{pq}=b_{qp}$

$$\begin{pmatrix} b_{pp} & b_{pq} \\ b_{qp} & b_{qq} \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} a_{pp} & a_{pq} \\ a_{qp} & a_{qq} \end{pmatrix} \begin{pmatrix} c & s \\ -s & c \end{pmatrix} = \dots$$

$$= \begin{bmatrix} \frac{c^2 a_{pp} + s^2 a_{qq} - 2sc \ a_{pq} \ | \ (c^2 - s^2) a_{pq} - sc(a_{qq} - a_{pp})}{*} \\ c^2 a_{qq} + s^2 a_{pp} + 2sc \ a_{pq} \end{bmatrix}$$

➤ Want:

$$(c^2-s^2)a_{pq}-sc(a_{qq}-a_{pp})=0$$

14-25 ______ GvL 8.1-8.2.3 – EigenPart3

- ➤ Define:
- $A_O = A \mathsf{Diag}(A)$
- $\equiv A$ 'with its diagonal entries replaced by zeros'
- ightharpoonup Observations: (1) Unitary transformations preserve $\|.\|_F$. (2) Only changes are in rows and columns p and q.
- Let $B = J^T A J$ (where $J \equiv J_{p,q,\theta}$). Then:

$$a_{pp}^2 + a_{qq}^2 + 2a_{pq}^2 = b_{pp}^2 + b_{qq}^2 + 2b_{pq}^2 = b_{pp}^2 + b_{qq}^2$$

because $b_{pq}=0$. Then, a little calculation leads to:

$$egin{aligned} \|B_O\|_F^2 &= \|B\|_F^2 - \sum b_{ii}^2 = \|A\|_F^2 - \sum b_{ii}^2 \ &= \|A\|_F^2 - \sum a_{ii}^2 + \sum a_{ii}^2 - \sum b_{ii}^2 \ &= \|A_O\|_F^2 + (a_{pp}^2 + a_{qq}^2 - b_{pp}^2 - b_{qq}^2) \ &= \|A_O\|_F^2 - 2a_{pq}^2 \end{aligned}$$

 $rac{c^2-s^2}{2sc}=rac{a_{qq}-a_{pp}}{2a_{pq}}\equiv au$

► Letting t = s/c (= $\tan \theta$) \rightarrow quad. equation

$$t^2 + 2\tau t - 1 = 0$$

- $\blacktriangleright t = -\tau \pm \sqrt{1 + \tau^2} = \frac{1}{\tau \pm \sqrt{1 + \tau^2}}$
- ► Select sign to get a smaller t so $\theta \le \pi/4$.
- ightharpoonup Then : $c=rac{1}{\sqrt{1+t^2}}; \qquad s=c*t$
- ➤ Implemented in matlab script jacrot (A,p,q) -

 $ightharpoonup \|A_O\|_F$ will decrease from one step to the next.

$$||A_O||_F \le \sqrt{n(n-1)} ||A_O||_I$$

GvL 8.1-8.2.3 - EigenPart3

Use this to show convergence in the case when largest entry is zeroed at each step.