ALGORITHMS FOR EIGENVALUE PROBLEMS

- The Power method

- The QR algorithm
- Practical QR algorithms: use of Hessenberg form and shifts
- The symmetric QR method
- The Jacobi method

Basic algorithm: The power method

$>$ Basic idea is to generate the sequence of vectors $A^{k} v_{0}$ where $v_{0} \neq 0$ - then normalize.
$>$ Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Power Method

1. Choose a nonzero initial vector $\boldsymbol{v}^{(0)}$
2. For $k=1,2, \ldots$, until convergence, Do:
3. $\alpha_{k}=\operatorname{argmax}_{i=1, \ldots, n}\left|\left(A v^{(k-1)}\right)_{i}\right|$
4. $\quad \boldsymbol{v}^{(k)}=\frac{1}{\alpha_{k}} \boldsymbol{A} \boldsymbol{v}^{(k-1)}$
5. EndDo
$>\operatorname{argmax}_{\mathrm{i}=1, . ., \mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}\right| \equiv$ the component x_{i} with largest modulus
14-2
Note that $\boldsymbol{A}^{k} \boldsymbol{u}_{i}=\lambda_{i}^{k} \boldsymbol{u}_{i}$

$$
\begin{aligned}
v^{(k)} & =\frac{1}{\text { scaling }} \times \sum_{i=1}^{n} \lambda_{i}^{k} \gamma_{i} u_{i} \\
& =\frac{1}{\text { scaling }} \times\left[\lambda_{1}^{k} \gamma_{1} u_{1}+\sum_{i=2}^{n} \lambda_{i}^{k} \gamma_{i} u_{i}\right] \\
& =\frac{1}{\text { scaling }} \times\left[u_{1}+\sum_{i=2}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} \frac{\gamma_{i}}{\gamma_{1}} u_{i}\right]
\end{aligned}
$$

$>$ Second term inside bracket converges to zero. QED
$>$ Proof suggests that the convergence factor is given by

$$
\rho_{D}=\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}
$$

where $\boldsymbol{\lambda}_{2}$ is the second largest eigenvalue in modulus.
$>$ Each u_{i} is an eigenvector associated with $\boldsymbol{\lambda}_{i}$.

Example: Consider a 'Markov Chain' matrix of size $n=55$. Dominant eigenvalues are $\boldsymbol{\lambda}=1$ and $\boldsymbol{\lambda}=-1>$ the power method applied directly to \boldsymbol{A} fails. (Why?)
$>$ We can consider instead the matrix $I+A$ The eigenvalue $\boldsymbol{\lambda}=1$ is then transformed into the (only) dominant eigenvalue $\boldsymbol{\lambda}=2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	$0.639 \mathrm{D}-01$	$0.276 \mathrm{D}-01$	1.02591636
40	$0.129 \mathrm{D}-01$	$0.513 \mathrm{D}-02$	1.00680780
60	$0.192 \mathrm{D}-02$	$0.808 \mathrm{D}-03$	1.00102145
80	$0.280 \mathrm{D}-03$	$0.121 \mathrm{D}-03$	1.00014720
100	$0.400 \mathrm{D}-04$	$0.174 \mathrm{D}-04$	1.00002078
120	$0.562 \mathrm{D}-05$	$0.247 \mathrm{D}-05$	1.00000289
140	$0.781 \mathrm{D}-06$	$0.344 \mathrm{D}-06$	1.00000040
161	$0.973 \mathrm{D}-07$	$0.430 \mathrm{D}-07$	1.00000005

14-5
Question: What is the best shift-of-origin σ to use?
$>$ Easy to answer the question when all eigenvalues are real.
Assume all eigenvalues are real and labeled decreasingly:

$$
\lambda_{1}>\lambda_{2} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Then: If we shift A to $A-\sigma I$:
The shift σ that yields the best convergence factor is:

$$
\sigma_{o p t}=\frac{\lambda_{2}+\lambda_{n}}{2}
$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ. Determine the minimum value and prove the above result.

The Shifted Power Method

$>$ In previous example shifted A into $B=A+I$ before applying power method. We could also iterate with $\boldsymbol{B}(\sigma)=\boldsymbol{A}+\sigma I$ for any positive σ

Example: With $\sigma=0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	$0.273 \mathrm{D}-01$	$0.794 \mathrm{D}-02$	1.00524001
40	$0.729 \mathrm{D}-03$	$0.210 \mathrm{D}-03$	1.00016755
60	$0.183 \mathrm{D}-04$	$0.509 \mathrm{D}-05$	1.00000446
80	$0.437 \mathrm{D}-06$	$0.118 \mathrm{D}-06$	1.00000011
88	$0.971 \mathrm{D}-07$	$0.261 \mathrm{D}-07$	1.00000002

Inverse Iteration

Observation: The eigenvectors of A and A^{-1} are identical.
$>$ Idea: use the power method on A^{-1}.
$>$ Will compute the eigenvalues closest to zero.
$>$ Shift-and-invert Use power method on $(A-\sigma I)^{-1}$.
$>$ will compute eigenvalues closest to σ.
$>$ Rayleigh-Quotient Iteration: use $\sigma=\frac{v^{T} A v}{v^{T} v}$ (best approximation to $\boldsymbol{\lambda}$ given \boldsymbol{v}).
> Advantages: fast convergence in general.
$>$ Drawbacks: need to factor \boldsymbol{A} (or $\boldsymbol{A}-\sigma I$) into LU.

The QR algorithm

$>$ The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR algorithm (basic)
Until Convergence Do:
Compute the QR factorization $A=Q R$
Set $\boldsymbol{A}:=R Q$
4. EndDo
>"Until Convergence" means "Until \boldsymbol{A} becomes close enough to an upper triangular matrix"
$>$ Note: $A_{\text {new }}=R Q=Q^{H}(Q R) Q=Q^{H} A Q$
$>A_{\text {new }}$ is Unitarily similar to $A \rightarrow$ Spectrum does not change
14-9
> Above basic algorithm is never used as is in practice. Two variations:
(1) Use shift of origin and
(2) Start by transforming \boldsymbol{A} into an Hessenberg matrix
> Convergence analysis complicated - but insight: we are implicitly doing a QR factorization of A^{k} :

$>\left[Q_{0} Q_{1} Q_{2}\right]\left[R_{2} R_{1} R_{0}\right]==$ QR factorization of A^{3}
> This helps analyze the algorithm (details skipped)

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by

```
|
```

where we assume: $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|$.
$>$ For simplicity we will consider the situation when all eigenvalues are real.
$>$ As $k \rightarrow \infty$ the last row (except $a_{n n}^{(k)}$) converges to zero quickly .
$>$.. and $a_{n n}^{(k)}$ converges to eigenvalue of smallest magnitude.

$$
A^{(k)}=\left(\begin{array}{ccccc|c}
. & . & . & . & \cdot & a \\
\cdot & . & \cdot & . & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & . & . & . & . & a \\
\hline a & a & a & a & a & a
\end{array}\right)
$$

$>$ Idea: Apply QR algorithm to $\boldsymbol{A}^{(k)}-\mu I$ with $\mu=a_{n n}^{(k)}$. Note: eigenvalues of $\boldsymbol{A}^{(k)}-\boldsymbol{\mu I}$ are shifted by $\boldsymbol{\mu}$ (eigenvectors unchanged). \rightarrow Shift matrix by $+\boldsymbol{\mu I}$ after iteration.

QR algorithm with shifts

1. Until row $a_{i n}, 1 \leq i<n$ converges to zero DO:
2. Obtain next shift (e.g. $\mu=a_{n n}$)
3. $A-\mu I=Q R$
4. Set $A:=R Q+\mu I$
5. EndDo
$>$ Convergence (of last row) is cubic at the limit! [for symmetric case]

14-13
$>$ Result of algorithm:

$$
\boldsymbol{A}^{(\boldsymbol{k})}=\left(\begin{array}{ccccc|c}
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \boldsymbol{\lambda}_{n}
\end{array}\right)
$$

$>$ Next step: deflate, i.e., apply above algorithm to $(n-1) \times(n-1)$ upper block.

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$
a_{i j}=0 \text { for } i>j+1
$$

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmetric form). Results in substantial savings: $O\left(n^{2}\right)$ flops per step instead of $O\left(n^{3}\right)$

Transformation to Hessenberg form

$>$ Want $\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}^{T}=\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}$ to have the form shown on the right
$>$ Consider the first step only on a 6×6 matrix

$>$ Choose a \boldsymbol{w} in $H_{1}=I-2 \boldsymbol{w} \boldsymbol{w}^{T}$ to make the first column have zeros from position
3 to n. So $w_{1}=0$.
$>$ Apply to left: $B=\boldsymbol{H}_{1} \boldsymbol{A}$
$>$ Apply to right: $\boldsymbol{A}_{1}=\boldsymbol{B} \boldsymbol{H}_{1}$.
Main observation: the Householder matrix \boldsymbol{H}_{1} which transforms the column $\boldsymbol{A}(2$: $n, 1)$ into e_{1} works only on rows 2 to n. When applying the transpose \boldsymbol{H}_{1} to the right of $B=H_{1} A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).
$>$ Algorithm continues the same way for columns $2, \ldots, \boldsymbol{n}-2$.

14-17 GvL 8.1-8.2.3-EigenPart3

$$
\boldsymbol{A}=\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

1. Choose $G_{1}=G\left(1,2, \theta_{1}\right)$ so that $\left(G_{1}^{T} A_{0}\right)_{21}=0$

$$
>A_{1}=G_{1}^{T} A G_{1}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
+ & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

QR algorithm for Hessenberg matrices

$>$ Need the "Implicit Q theorem"

Suppose that $Q^{T} A Q$ is an unreduced upper Hessenberg matrix. Then columns 2

 to n of Q are determined uniquely (up to signs) by the first column of $Q$$>$ In other words if $\boldsymbol{V}^{T} \boldsymbol{A} \boldsymbol{V}=\boldsymbol{G}$ and $\boldsymbol{Q}^{T} \boldsymbol{A Q}=\boldsymbol{H}$ are both Hessenberg and $V(:, 1)=Q(:, 1)$ then $V(:, i)= \pm Q(:, i)$ for $i=2: n$.

Implication: To compute $A_{i+1}=Q_{i}^{T} A Q_{i}$ we can:
$>$ Compute 1st column of $Q_{i}[==$ scalar $\times A(:, 1)]$
$>$ Choose other columns so $Q_{i}=$ unitary, and $\boldsymbol{A}_{i+1}=$ Hessenberg.

[^0]Choose $G_{2}=G\left(2,3, \theta_{2}\right)$ so that $\left(G_{2}^{T} A_{1}\right)_{31}=0$

$$
>A_{2}=G_{2}^{T} A_{1} G_{2}=\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & + & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

3. Choose $G_{3}=G\left(3,4, \theta_{3}\right)$ so that $\left(G_{3}^{T} A_{2}\right)_{42}=0$

$$
>A_{3}=G_{3}^{T} A_{2} G_{3}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & + & * & *
\end{array}\right)
$$

4. Choose $G_{4}=G\left(4,5, \theta_{4}\right)$ so that $\left(G_{4}^{T} A_{3}\right)_{53}=0$

$$
>A_{4}=G_{4}^{T} A_{3} G_{4}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

> Process known as "Bulge chasing"
$>$ Similar idea for the symmetric (tridiagonal) case

Practical method

> How to implement the QR algorithm with shifts?
> It is best to use Givens rotations - can do a shifted QR step without explicitly shifting the matrix..
> Two most popular shifts:

$$
s=a_{n n} \text { and } s=\text { smallest e.v. of } A(n-1: n, n-1: n)
$$

The QR algorithm for symmetric matrices

> Most common approach used : reduce to tridiagonal form and apply the QR algorithm with shifts.
> Householder transformation to Hessenberg form yields a tridiagonal matrix because

$$
H A H^{T}=A_{1}
$$

is symmetric and also of Hessenberg form $>$ it is tridiagonal symmetric.
Tridiagonal form preserved by QR similarity transformation

The Jacobi algorithm for symmetric matrices
$>$ Main idea: Rotation matrices of the form

$$
J(p, q, \theta)=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & & \cdots & 0 & 0 \\
\vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & c & \cdots & s & \cdots & 0 \\
\vdots & \cdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & -s & \cdots & c & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & & \cdots & & 1
\end{array}\right) q
$$

$c=\cos \theta$ and $s=\sin \theta$ are so that $J(p, q, \theta)^{T} \boldsymbol{A} J(p, q, \theta)$ has a zero in position $(\boldsymbol{p}, \boldsymbol{q})$ (and also ($\boldsymbol{q}, \boldsymbol{p})$)
$>$ Frobenius norm of matrix is preserved - but diagonal elements become larger > convergence to a diagonal.
$>$ Let $\boldsymbol{B}=\boldsymbol{J}^{T} \boldsymbol{A} \boldsymbol{J}$ (where $\boldsymbol{J} \equiv J_{p, q, \theta}$).
$>$ Look at 2×2 matrix $\boldsymbol{B}([p, q],[p, q])$ (matlab notation)
$>$ Keep in mind that $a_{p q}=a_{q p}$ and $b_{p q}=b_{q p}$

$$
\begin{aligned}
\left(\begin{array}{cc}
b_{p p} & b_{p q} \\
b_{q p} & b_{q q}
\end{array}\right) & =\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{cc}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)=\ldots \\
& =\left[\begin{array}{c|c}
c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} & \left(c^{2}-s^{2}\right) a_{p q}-s c\left(a_{q q}-a_{p p}\right) \\
\hline * & c^{2} a_{q q}+s^{2} a_{p p}+2 s c a_{p q}
\end{array}\right]
\end{aligned}
$$

$>$ Want:

$$
\left(c^{2}-s^{2}\right) a_{p q}-s c\left(a_{q q}-a_{p p}\right)=0
$$

$\xlongequal{14-25}$ GvL 8.1-8.2.3-EigenPart3
> Define:
$\boldsymbol{A}_{O}=\boldsymbol{A}-\operatorname{Diag}(\boldsymbol{A})$
$\equiv \boldsymbol{A}$ 'with its diagonal entries replaced by zeros'
$>$ Observations: (1) Unitary transformations preserve $\|\cdot\|_{F}$. (2) Only changes are in rows and columns \boldsymbol{p} and \boldsymbol{q}.
$>$ Let $B=J^{T} A J$
(where $J \equiv J_{p, q, \theta}$). Then:

$$
a_{p p}^{2}+a_{q q}^{2}+2 a_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}+2 b_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}
$$

because $b_{p q}=0$. Then, a little calculation leads to:

$$
\begin{aligned}
\left\|\boldsymbol{B}_{O}\right\|_{F}^{2} & =\|\boldsymbol{B}\|_{F}^{2}-\sum b_{i i}^{2}=\|\boldsymbol{A}\|_{F}^{2}-\sum b_{i i}^{2} \\
& =\|\boldsymbol{A}\|_{F}^{2}-\sum a_{i i}^{2}+\sum a_{i i}^{2}-\sum b_{i i}^{2} \\
& =\left\|\boldsymbol{A}_{O}\right\|_{F}^{2}+\left(a_{p p}^{2}+\boldsymbol{a}_{q q}^{2}-b_{p p}^{2}-b_{q q}^{2}\right) \\
& =\left\|\boldsymbol{A}_{O}\right\|_{F}^{2}-2 a_{p q}^{2}
\end{aligned}
$$

$$
\frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}} \equiv \tau
$$

$>$ Letting $t=s / c(=\tan \theta) \quad \rightarrow$ quad. equation

$$
t^{2}+2 \tau t-1=0
$$

$>t=-\tau \pm \sqrt{1+\tau^{2}}=\frac{1}{\tau \pm \sqrt{1+\tau^{2}}}$
$>$ Select sign to get a smaller t so $\theta \leq \pi / 4$.
$>$ Then : $\quad c=\frac{1}{\sqrt{1+t^{2}}} ; \quad s=c * t$
$>$ Implemented in matlab script jacrot (A, p, q) -
$\stackrel{\text { 14-26 }}{ }$
$\left\|\boldsymbol{A}_{O}\right\|_{F}$ will decrease from one step to the next.Let $\left\|A_{O}\right\|_{I}=\max _{i \neq j}\left|a_{i j}\right|$. Show that

$$
\left\|A_{O}\right\|_{F} \leq \sqrt{n(n-1)}\left\|A_{O}\right\|_{I}
$$Use this to show convergence in the case when largest entry is zeroed at each step.

[^0]: 14-18

