- Inner products
- Vector norms
- Matrix norms
- Introduction to singular values
- Expressions of some matrix norms.

Inner products and Norms

Inner product of 2 vectors

> Inner product of 2 vectors x and y in \mathbb{R}^n :

 $x_1y_1+x_2y_2+\cdots+x_ny_n$ in \mathbb{R}^n

Notation: (x, y) or $y^T x$

► For complex vectors

$$(x,y)=x_1ar y_1+x_2ar y_2+\dots+x_nar y_n$$
 in \mathbb{C}^n

Note: $(x, y) = y^H x$

• On notation: Sometimes you will find $\langle .,. \rangle$ for (.,.) and A^* instead of A^H

GvL 2.2-2.3; - Norms

Properties of Inner Products:

- \succ $(x,y) = \overline{(y,x)}.$
- ightarrow (lpha x + eta y, z) = lpha (x, z) + eta (y, z) [Linearity]
- \succ $(x, x) \ge 0$ is always real and non-negative.
- \succ (x, x) = 0 iff x = 0 (for finite dimensional spaces).
- ▶ Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \hspace{1em} orall \hspace{1em} x \hspace{1em} \in \hspace{1em} \mathbb{C}^n, orall y \hspace{1em} \in \hspace{1em} \mathbb{C}^m$$

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

> A vector norm on a vector space X is a real-valued function on X, which satisfies the following three conditions:

1.
$$\|x\| \ge 0$$
, $\forall x \in \mathbb{X}$, and $\|x\| = 0$ iff $x = 0$.

- 2. $\|\alpha x\| = |\alpha| \|x\|, \quad \forall x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$
- 3. $||x + y|| \le ||x|| + ||y||, \quad \forall x, y \in X.$

► Third property is called the triangle inequality.

Important example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

And the show that when Q is orthogonal then $\|Qx\|_2 = \|x\|_2$

> Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \ge 1$):

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (online search) how to show that these are indeed norms for any $p \ge 1$ (Not easy for 3rd requirement!)

 \blacktriangleright Limit of $||x||_p$ when $p \rightarrow \infty$ exists:

$$\lim_{p o\infty}\|x\|_p=\ \max_{i=1}^n|x_i|$$

> Defines a norm denoted by $\|.\|_{\infty}$.

The cases p = 1, p = 2, and $p = \infty$ lead to the most important norms $\|.\|_p$ in practice. These are:

$$egin{aligned} \|x\|_1 &= |x_1| + |x_2| + \dots + |x_n|, \ \|x\|_2 &= ig[|x_1|^2 + |x_2|^2 + \dots + |x_n|^2ig]^{1/2}, \ \|x\|_\infty &= \max_{i=1,\dots,n} |x_i|. \end{aligned}$$

GvL 2.2-2.3; - Norms

The Cauchy-Schwartz inequality (important) is:

 $|(x,y)| \leq \|x\|_2 \|y\|_2.$

Mhen do you have equality in the above relation?

Expand (x + y, x + y). What does the Cauchy-Schwarz inequality imply?

> The Hölder inequality (less important for $p \neq 2$) is:

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $rac{1}{p} + rac{1}{q} = 1$

Second triangle inequality: $||x|| - ||y||| \le ||x - y||$.

Consider the metric $d(x, y) = max_i|x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Equivalence of norms:

In finite dimensional spaces (\mathbb{R}^n , \mathbb{C}^n , ...) all norms are 'equivalent': if ϕ_1 and ϕ_2 are two norms then there exists positive constants α , β such that:

 $eta \phi_2(x) \leq \phi_1(x) \leq lpha \phi_2(x).$

Mathebra How can you prove this result? [Hint: Show for $\phi_2 = \|.\|_{\infty}$]

> We can bound one norm in terms of any other norm.

And Show that for any x: $rac{1}{\sqrt{n}}\|x\|_1 \leq \|x\|_2 \leq \|x\|_1$

Moreover What are the "unit balls" $B_p=\{x\mid \|x\|_p\leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty,$ in $\mathbb{R}^2?$

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k = 1, ..., \infty$ converges to a vector x with respect to the norm $\|.\|$ if, by definition,

$$\lim_{k o\infty} \ \|x^{(k)}-x\|=0$$

► Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.

► Notation:

$$\lim_{k\to\infty}x^{(k)}=x$$

GvL 2.2-2.3; - Norms

Example: The sequence

$$x^{(k)} = egin{pmatrix} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{pmatrix}$$

converges to

$$x = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$$

Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresoponding component x_i of x.

> Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,

1.
$$||A|| \ge 0, \forall A \in \mathbb{C}^{m \times n}$$
, and $||A|| = 0$ iff $A = 0$
2. $||\alpha A|| = |\alpha| ||A||, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$
3. $||A + B|| \le ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$.

► However, these will lack (in general) the right properties for composition of operators (product of matrices).

> The case of $\|.\|_2$ yields the Frobenius norm of matrices.

Siven a matrix A in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x\in \mathbb{C}^n, \; x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

These norms satisfy the usual properties of vector norms (see previous page).

> The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.

> Again, important cases are for $p = 1, 2, \infty$.

> Show that $||A||_p = \max_{x \in \mathbb{C}^n, ||x||_p=1} ||Ax||_p$ and also that : $||Ax||_p \le ||A||_p ||x||_p$

Consistency / sub-mutiplicativity of matrix norms

> A fundamental property of matrix norms is consistency

 $\|AB\|_p \le \|A\|_p \|B\|_p.$

[Also termed "sub-multiplicativity"]

- > Consequence: (for square matrices) $||A^k||_p \le ||A||_p^k$
- $\blacktriangleright A^k$ converges to zero if any of its p-norms is < 1

[Note: sufficient but not necessary condition]

Frobenius norms of matrices

► The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2\right)^{1/2}.$$

Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.

> This norm is also consistent [but not induced from a vector norm]

Compute the Frobenius norms of the matrices

$$egin{pmatrix} 1 & 1 \ 1 & 0 \ 3 & 2 \end{pmatrix} \quad egin{pmatrix} 1 & 2 & -1 \ -1 & \sqrt{5} & 0 \ -1 & 1 & \sqrt{2} \end{pmatrix}$$

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]

Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm?

[Hint: Result is true – Use Cauchy-Schwarz to prove it.]

Expressions of standard matrix norms

► Recall the notation: (for square $n \times n$ matrices) $\rho(A) = \max |\lambda_i(A)|$; Tr $(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i(A)$ where $\lambda_i(A)$, i = 1, 2, ..., n are all eigenvalues of A

$$\begin{split} \|A\|_{1} &= \max_{j=1,...,n} \sum_{i=1}^{m} |a_{ij}|, \\ \|A\|_{\infty} &= \max_{i=1,...,m} \sum_{j=1}^{n} |a_{ij}|, \\ \|A\|_{2} &= \left[\rho(A^{H}A)\right]^{1/2} = \left[\rho(AA^{H})\right]^{1/2}, \\ \|A\|_{F} &= \left[\operatorname{Tr}\left(A^{H}A\right)\right]^{1/2} = \left[\operatorname{Tr}\left(AA^{H}\right)\right]^{1/2}. \end{split}$$

M13 Compute the p-norm for $p=1,2,\infty,F$ for the matrix

$$A = \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix}$$

214 Show that $\rho(A) \leq ||A||$ for any matrix norm.

15 Is $\rho(A)$ a norm?

1. $\rho(A) = ||A||_2$ when A is Hermitian $(A^H = A)$. > True for this particular case...

2. ... However, not true in general. For $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, we have $\rho(A) = 0$ while

 $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B = A^T$. Indeed, ho(A + B) = 1 while ho(A) +
ho(B) = 0.

Given a function f(t) (e.g., e^t) how would you define f(A)? [Was seen earlier. Here you need to fully justify answer. Assume A is diagonalizable]

Singular values and matrix norms

 \blacktriangleright Let $A \in \mathbb{R}^{m imes n}$ or $A \in \mathbb{C}^{m imes n}$

► Eigenvalues of $A^H A \& A A^H$ are real ≥ 0 . Mathematical Show this.

$$\blacktriangleright \text{ Let } \left\{ \begin{array}{l} \sigma_i = \sqrt{\lambda_i(A^HA)} \ i = 1, \cdots, n \quad \text{if } n \leq m \\ \sigma_i = \sqrt{\lambda_i(AA^H)} \ i = 1, \cdots, m \quad \text{if } m < n \end{array} \right.$$

> The σ_i 's are called singular values of A.

- > Note: a total of $\min(m, n)$ singular values.
- ► Always sorted decreasingly: $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \cdots \sigma_k \ge \cdots$
- > We will see a lot more on singular values later

> Assume we have r nonzero singular values (with $r \leq \min\{m, n\}$) :

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

$$ullet \|A\|_2 = \sigma_1$$

 $ullet \|A\|_F = ig[\sum_{i=1}^r \sigma_i^2ig]^{1/2}$

More generally: Schatten p-norm $(p \geq 1) \text{ defined by}$

$$\|A\|_{*,p} = ig[\sum_{i=1}^r \sigma_i^pig]^{1/p}$$

Note:
$$||A||_{*,p} = p$$
-norm of vector $[\sigma_1; \sigma_2; \cdots; \sigma_r]$

► In particular: $||A||_{*,1} = \sum \sigma_i$ is called the nuclear norm and is denoted by $||A||_*$. (Common in machine learning).

A few properties of the 2-norm and the F-norm

▶ Let $A = uv^T$. Then $||A||_2 = ||u||_2 ||v||_2$

▶ Prove this result

19 In this case $||A||_F = ??$

For any $A \in \mathbb{C}^{m \times n}$ and unitary matrix $Q \in \mathbb{C}^{m \times m}$ we have $\|QA\|_2 = \|A\|_2; \quad \|QA\|_F = \|A\|_F.$

Show that the result is true for any orthogonal matrix Q (Q has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with p > m

M21 Let $Q \in \mathbb{C}^{n \times n}$, unitary. Do we have $||AQ||_2 = ||A||_2$? $||AQ||_F = ||A||_F$? What if $Q \in \mathbb{C}^{n \times p}$, with p < n (and $Q^H Q = I$)?