VECTOR \& MATRIX NORMS

- Inner products

- Vector norms
- Matrix norms
- Introduction to singular values
- Expressions of some matrix norms.

Properties of Inner Products:

$>(x, y)=\overline{(y, x)}$.
$>(\alpha x+\beta y, z)=\alpha(x, z)+\beta(y, z) \quad$ [Linearity]
$>(x, x) \geq 0$ is always real and non-negative.
$>(x, x)=0$ iff $x=0$ (for finite dimensional spaces).
$>$ Given $\boldsymbol{A} \in \mathbb{C}^{m \times n}$ then

$$
(A x, y)=\left(x, A^{H} y\right) \quad \forall x \in \mathbb{C}^{n}, \forall y \in \mathbb{C}^{m}
$$

Vector norms

Inner products and Norms

Inner product of 2 vectors

$>$ Inner product of 2 vectors x and y in \mathbb{R}^{n} :

$$
x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} \text { in } \mathbb{R}^{n}
$$

Notation: (x, y) or $\boldsymbol{y}^{T} \boldsymbol{x}$
> For complex vectors

$$
(x, y)=x_{1} \bar{y}_{1}+x_{2} \overline{\boldsymbol{y}}_{2}+\cdots+\boldsymbol{x}_{n} \overline{\boldsymbol{y}}_{n} \text { in } \mathbb{C}^{n}
$$

Note: $(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{y}^{\boldsymbol{H}} \boldsymbol{x}$

- On notation: Sometimes you will find $\langle.,$.$\rangle for (.,.) and A^{*}$ instead of \boldsymbol{A}^{H}
2-2

Norms are needed to measure lengths of vectors and closeness of two vectors Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ..
> A vector norm on a vector space \mathbb{X} is a real-valued function on \mathbb{X}, which satisfies the following three conditions:

```
1. \(\|x\| \geq 0, \quad \forall x \in \mathbb{X}, \quad\) and \(\quad\|x\|=0\) iff \(x=0\).
2. \(\|\alpha x\|=|\alpha|\|x\|, \quad \forall x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}\).
3. \(\|x+y\| \leq\|x\|+\|y\|, \quad \forall x, y \in \mathbb{X}\).
```

> Third property is called the triangle inequality.

Important example: Euclidean norm on $\mathbb{X}=\mathbb{C}^{n}$,

$$
\|x\|_{2}=(x, x)^{1 / 2}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\ldots+\left|x_{n}\right|^{2}}
$$

\& Show that when Q is orthogonal then $\|Q x\|_{2}=\|x\|_{2}$
$>$ Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \geq 1$):

$$
\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$Find out (online search) how to show that these are indeed norms for any $p \geq 1$ (Not easy for 3rd requirement!)

2-5
$>$ The Cauchy-Schwartz inequality (important) is:

$$
|(x, y)| \leq\|x\|_{2}\|y\|_{2} .
$$When do you have equality in the above relation?Expand $(x+y, x+y)$. What does the Cauchy-Schwarz inequality imply?

$>$ The Hölder inequality (less important for $p \neq 2$) is:

$$
|(x, y)| \leq\|x\|_{p}\|y\|_{q}, \text { with } \frac{1}{p}+\frac{1}{q}=1
$$Second triangle inequality: $\quad|\|x\|-\|y\|| \leq\|x-y\|$Consider the metric $d(x, y)=\max _{i}\left|x_{i}-y_{i}\right|$. Show that any norm in \mathbb{R}^{n} is a continuous function with respect to this metric.

Property: $>$ Limit of $\|x\|_{p}$ when $p \rightarrow \infty$ exists:

$$
\lim _{p \rightarrow \infty}\|x\|_{p}=\max _{i=1}^{n}\left|x_{i}\right|
$$

$>$ Defines a norm denoted by $\|\cdot\|_{\infty}$.
$>$ The cases $p=1, p=2$, and $p=\infty$ lead to the most important norms $\|\cdot\|_{p}$ in practice. These are:

$$
\begin{aligned}
& \|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \\
& \|x\|_{2}=\left[\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right]^{1 / 2} \\
& \|x\|_{\infty}=\max _{i=1, \ldots, n}\left|x_{i}\right|
\end{aligned}
$$

Equivalence of norms:

In finite dimensional spaces $\left(\mathbb{R}^{n}, \mathbb{C}^{n}, ..\right)$ all norms are 'equivalent': if ϕ_{1} and ϕ_{2} are two norms then there exists positive constants α, β such that:

$$
\beta \phi_{2}(x) \leq \phi_{1}(x) \leq \alpha \phi_{2}(x)
$$How can you prove this result? [Hint: Show for $\phi_{2}=\|\cdot\|_{\infty}$]

$>$ We can bound one norm in terms of any other norm.Show that for any x : \squareAn What are the "unit balls" $\boldsymbol{B}_{p}=\left\{x \mid\|x\|_{p} \leq 1\right\}$ associated with the norms $\|\cdot\|_{p}$ for $p=1,2, \infty$, in \mathbb{R}^{2} ?

Convergence of vector sequences

A sequence of vectors $\boldsymbol{x}^{(k)}, \boldsymbol{k}=1, \ldots, \infty$ converges to a vector \boldsymbol{x} with respect to the norm \|.\| if, by definition,

$$
\lim _{k \rightarrow \infty}\left\|x^{(k)}-x\right\|=0
$$

> Important point: because all norms in \mathbb{R}^{n} are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
$>$ Notation:

$$
\lim _{k \rightarrow \infty} x^{(k)}=x
$$

Example: The sequence

$$
x^{(k)}=\left(\begin{array}{c}
1+1 / k \\
\frac{k}{k+\log _{2} k} \\
\frac{1}{k}
\end{array}\right)
$$

converges to

$$
x=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

$>$ Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_{i}^{(k)}$ of $x^{(k)}$ to the corresoponding component x_{i} of x.

Matrix norms

$>$ Can define matrix norms by considering $m \times n$ matrices as vectors in $\mathbb{R}^{m n}$. These norms satisfy the usual properties of vector norms, i.e.,

1. $\|A\| \geq 0, \forall A \in \mathbb{C}^{m \times n}$, and $\|A\|=0$ iff $A=0$
2. $\|\alpha A\|=|\alpha|\|A\|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$
3. $\|A+B\| \leq\|A\|+\|B\|, \forall A, B \in \mathbb{C}^{m \times n}$.
$>$ However, these will lack (in general) the right properties for composition of operators (product of matrices).
$>$ The case of $\|\cdot\|_{2}$ yields the Frobenius norm of matrices.

2-10
Given a matrix \boldsymbol{A} in $\mathbb{C}^{m \times n}$, define the set of matrix norms

$$
\|A\|_{p}=\max _{x \in \mathbb{C}^{n}, x \neq 0} \frac{\|A x\|_{p}}{\|x\|_{p}}
$$

$>$ These norms satisfy the usual properties of vector norms (see previous page).
$>$ The matrix norm $\|\cdot\|_{p}$ is induced by the vector norm $\|\cdot\|_{p}$.
$>$ Again, important cases are for $p=1,2, \infty$.
$>$ Show that $\quad\|A\|_{p}=\max _{x \in \mathbb{C}^{n},\|x\|_{p}=1}\|A x\|_{p}$ and also that:

$$
\|A x\|_{p} \leq\|A\|_{p}\|x\|_{p}
$$

\qquad

Consistency / sub-mutiplicativity of matrix norms

>A fundamental property of matrix norms is consistency

$$
\|A B\|_{p} \leq\|A\|_{p}\|B\|_{p} .
$$

[Also termed "sub-multiplicativity"]
$>$ Consequence: (for square matrices) $\left\|\boldsymbol{A}^{k}\right\|_{p} \leq\|\boldsymbol{A}\|_{p}^{k}$
$>\boldsymbol{A}^{k}$ converges to zero if any of its p-norms is <1
[Note: sufficient but not necessary condition]

$$
\left(\begin{array}{ll}
1 & 1 \\
1 & 0 \\
3 & 2
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & 2 & -1 \\
-1 & \sqrt{5} & 0 \\
-1 & 1 & \sqrt{2}
\end{array}\right)
$$Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]Define the 'vector 1-norm' of a matrix \boldsymbol{A} as the 1 -norm of the vector of stacked columns of \boldsymbol{A}. Is this norm a consistent matrix norm?

[Hint: Result is true - Use Cauchy-Schwarz to prove it.]

Expressions of standard matrix norms

Frobenius norms of matrices

> The Frobenius norm of a matrix is defined by

$$
\|\boldsymbol{A}\|_{F}=\left(\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|^{2}\right)^{1 / 2}
$$

> Same as the 2 -norm of the column vector in $\mathbb{C}^{m n}$ consisting of all the columns (respectively rows) of \boldsymbol{A}.
$>$ This norm is also consistent [but not induced from a vector norm]
$>$ Recall the notation: (for square $n \times n$ matrices)
$\rho(A)=\max \left|\lambda_{i}(A)\right| ; \quad \operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} \lambda_{i}(A)$ where $\lambda_{i}(A), i=$ $1,2, \ldots, n$ are all eigenvalues of A

$$
\begin{aligned}
& \|A\|_{1}=\max _{j=1, \ldots, n} \sum_{i=1}^{m}\left|a_{i j}\right|, \\
& \|A\|_{\infty}=\max _{i=1, \ldots, m}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|, \\
& \|A\|_{2}=\left[\rho\left(A^{H} A\right)\right]^{1 / 2}=\left[\rho\left(A A^{H}\right)\right]^{1 / 2}, \\
& \|A\|_{F}=\left[\operatorname{Tr}\left(A^{H} A\right)\right]^{1 / 2}=\left[\operatorname{Tr}\left(\boldsymbol{A} A^{H}\right)\right]^{1 / 2} .
\end{aligned}
$$

© 13 Compute the p-norm for $p=1,2, \infty, F \quad A=\left(\begin{array}{ll}0 & 2 \\ 0 & 1\end{array}\right)$
for the matrix

Snow that $\rho(A) \leq\|A\|$ for any matrix norm.Is $\rho(A)$ a norm?

1. $\rho(A)=\|A\|_{2}$ when A is Hermitian $\left(A^{H}=A\right)$. $>$ True for this particular case...
2. ... However, not true in general. For $\boldsymbol{A}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, we have $\rho(A)=0$ while $\boldsymbol{A} \neq 0$. Also, triangle inequality not satisfied for the pair \boldsymbol{A}, and $B=\boldsymbol{A}^{T}$. Indeed, $\rho(A+B)=1$ while $\rho(A)+\rho(B)=0$.
(end Given a function $f(t)$ (e.g., e^{t}) how would you define $f(A)$? [Was seen earlier. Here you need to fully justify answer. Assume \boldsymbol{A} is diagonalizable]

2-17 GvL 2.2-2.3; - Norms
$>$ Assume we have r nonzero singular values (with $r \leq \min \{m, n\}$):

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0
$$

$>$ Then:

$$
\begin{aligned}
& \text { • }\|A\|_{2}=\sigma_{1} \\
& \bullet \bullet A \|_{F}=\left[\sum_{i=1}^{r} \sigma_{i}^{2}\right]^{1 / 2}
\end{aligned}
$$

$>$ More generally: Schatten p-norm

$$
\|A\|_{*, p}=\left[\sum_{i=1}^{r} \sigma_{i}^{p}\right]^{1 / p}
$$

($p \geq 1$) defined by
$>$ Note: $\|A\|_{*, p}=p$-norm of vector $\left[\sigma_{1} ; \sigma_{2} ; \cdots ; \sigma_{r}\right]$
$>$ In particular: $\|A\|_{*, 1}=\sum \sigma_{i}$ is called the nuclear norm and is denoted by $\|A\|_{*}$. (Common in machine learning).

Singular values and matrix norms

```
Let }A\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ or }A\in\mp@subsup{\mathbb{C}}{}{m\timesn
```

$>$ Eigenvalues of $\boldsymbol{A}^{H} \boldsymbol{A} \& A A^{H}$ are real ≥ 0. Sow this.
$>$ Let $\left\{\begin{array}{l}\sigma_{i}=\sqrt{\lambda_{i}\left(A^{H} A\right)} \quad i=1, \cdots, n \text { if } n \leq m \\ \sigma_{i}=\sqrt{\lambda_{i}\left(A A^{H}\right)} i=1, \cdots, m \text { if } m<n\end{array}\right.$
$>$ The σ_{i} 's are called singular values of \boldsymbol{A}.
$>$ Note: a total of $\min (m, n)$ singular values.
$>$ Always sorted decreasingly: $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq \cdots \sigma_{k} \geq \cdots$
$>$ We will see a lot more on singular values later

A few properties of the 2 -norm and the F-norm
$>$ Let $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$. Then $\|\boldsymbol{A}\|_{2}=\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}$Prove this resultIn this case $\|A\|_{F}=$??

For any $A \in \mathbb{C}^{m \times n}$ and unitary matrix $Q \in \mathbb{C}^{m \times m}$ we have

$\|Q A\|_{2}=\|A\|_{2} ; \quad\|Q A\|_{F}=\|A\|_{F}$.
α_{020} Show that the result is true for any orthogonal matrix \boldsymbol{Q} (\boldsymbol{Q} has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with $p>m$
Le21 Let $Q \in \mathbb{C}^{n \times n}$, unitary. Do we have $\|A Q\|_{2}=\|A\|_{2}$? $\|A Q\|_{F}=\|A\|_{F}$? What if $Q \in \mathbb{C}^{n \times p}$, with $p<n$ (and $\left.Q^{H} Q=I\right)$?

