SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting – permutation matrices.
- Case of banded systems
The Problem: \(A \) is an \(n \times n \) matrix, and \(b \) a vector of \(\mathbb{R}^n \). Find \(x \) such that:

\[
Ax = b
\]

\(x \) is the unknown vector, \(b \) the right-hand side, and \(A \) is the coefficient matrix.

Example:

\[
\begin{align*}
2x_1 + 4x_2 + 4x_3 &= 6 \\
x_1 + 5x_2 + 6x_3 &= 4 \\
x_1 + 3x_2 + x_3 &= 8
\end{align*}
\]

or

\[
\begin{pmatrix}
2 & 4 & 4 \\
1 & 5 & 6 \\
1 & 3 & 1
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
6 \\
4 \\
8
\end{pmatrix}
\]

Solution of above system?
Standard mathematical solution by Cramer’s rule:

\[x_i = \frac{\det(A_i)}{\det(A)} \]

\(A_i\) = matrix obtained by replacing \(i\)-th column by \(b\).

Note: This formula is useless in practice beyond \(n = 3\) or \(n = 4\).

Three situations:

1. The matrix \(A\) is nonsingular. There is a unique solution given by \(x = A^{-1}b\).
2. The matrix \(A\) is singular and \(b \in \text{Ran}(A)\). There are infinitely many solutions.
3. The matrix \(A\) is singular and \(b \notin \text{Ran}(A)\). There are no solutions.
Example: (1) Let $A = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$, $b = \begin{pmatrix} 1 \\ 8 \end{pmatrix}$. A is nonsingular \Rightarrow a unique solution $x = \begin{pmatrix} 0.5 \\ 2 \end{pmatrix}$.

Example: (2) Case where A is singular & $b \in \text{Ran}(A)$:

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \end{pmatrix}. $$

\Rightarrow infinitely many solutions: $x(\alpha) = \begin{pmatrix} 0.5 \\ \alpha \end{pmatrix}$ $\forall \alpha$.

Example: (3) Let A same as above, but $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

\Rightarrow No solutions since 2nd equation cannot be satisfied
Triangular linear systems

Example:

\[
\begin{pmatrix}
2 & 4 & 4 \\
0 & 5 & -2 \\
0 & 0 & 2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
2 \\
1 \\
4
\end{pmatrix}
\]

- One equation can be trivially solved: the last one. \(x_3 = 2\)
- \(x_3\) is known we can now solve the 2nd equation:

\[
5x_2 - 2x_3 = 1 \rightarrow 5x_2 - 2 \times 2 = 1 \rightarrow x_2 = 1
\]
- Finally \(x_1\) can be determined similarly:

\[
2x_1 + 4x_2 + 4x_3 = 2 \rightarrow \ldots \rightarrow x_1 = -5
\]
ALGORITHM : 1 Back-Substitution algorithm

For $i = n : -1 : 1$ do:

$t := b_i$

For $j = i + 1 : n$ do

\[t := t - a_{ij}x_j \]

End

End

We must require that each $a_{ii} \neq 0$

Operation count?

3-6 GvL 3.\{1,3,5\} – Systems
Column version of back-substitution

Back-Substitution algorithm. Column version

For \(j = n : -1 : 1 \) do:
\[
x_j = \frac{b_j}{a_{jj}}
\]
For \(i = 1 : j - 1 \) do
\[
b_i := b_i - x_j \ast a_{ij}
\]
End
End

Justify the above algorithm [Show that it does indeed compute the solution]

Analogous algorithms for lower triangular systems.
Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

\[
\begin{align*}
2x_1 + 4x_2 + 4x_3 &= 2 \\
x_1 + 3x_2 + x_3 &= 1 \\
x_1 + 5x_2 + 6x_3 &= -6
\end{align*}
\]
Main operation used: scaling and adding rows.

Example: Replace row2 by: row2 - $\frac{1}{2}$*row1:

\[
\begin{array}{ccc|c}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\end{array}
\rightarrow
\begin{array}{ccc|c}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\end{array}
\]

This is equivalent to:

\[
\begin{bmatrix}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\end{bmatrix}
=
\begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\end{bmatrix}
\]

The left-hand matrix is of the form $M = I - ve_1^T$ with $v = \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \end{pmatrix}$.
Go back to original system. Step 1 must transform:

\[
\begin{array}{ccc|c}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\end{array}
\quad \text{into:} \quad
\begin{array}{ccc|c}
x & x & x & x \\
0 & x & x & x \\
0 & x & x & x \\
\end{array}
\]

\[
\begin{array}{ccc|c}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\end{array}
\quad \text{row}_2 := \text{row}_2 - \frac{1}{2} \times \text{row}_1: \quad
\begin{array}{ccc|c}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\end{array}
\quad \text{row}_3 := \text{row}_3 - \frac{1}{2} \times \text{row}_1:
\]
Equivalent to

\[
\begin{pmatrix}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{1}{2} & 0 & 1
\end{pmatrix}
\times
\begin{pmatrix}
2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{pmatrix}
= \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix}
\]

\[\{A, b\} \rightarrow \{M_1A, M_1b\}; \quad M_1 = I - v^{(1)}e_1^T; \quad v^{(1)} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}\]

New system \(A_1x = b_1\). Step 2 must now transform:

\[
\begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix}
\]

into:

\[
\begin{pmatrix}
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{pmatrix}
\]
\[\text{row}_3 := \text{row}_3 - 3 \times \text{row}_2 : \rightarrow \]

\[
\begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7
\end{pmatrix}
\]

➢ Equivalent to

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -3 & 1 & 1
\end{pmatrix} \times \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{pmatrix} = \begin{pmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7
\end{pmatrix}
\]

➢ Second transformation is as follows:

\[
[A_1, b_1] \rightarrow [M_2 A_1, M_2 b_1]; \quad M_2 = I - v^{(2)} e^T_2; \quad v^{(2)} = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}
\]

➢ Triangular system ➢ Solve.
Gaussian Elimination in a picture

\[
piv = \frac{a(i,k)}{a(k,k)}
\]

row(i) := row(i) − piv * row(k)

For i = k+1:n Do:

\[
piv = \frac{a(i,k)}{a(k,k)}
\]

row(i) := row(i) − piv * row(k)
ALGORITHM 2: Gaussian Elimination

1. For $k = 1 : n - 1$ Do:
2. For $i = k + 1 : n$ Do:
3. \[\text{piv} := \frac{a_{ik}}{a_{kk}} \]
4. For $j = k + 1 : n + 1$ Do:
5. \[a_{ij} := a_{ij} - \text{piv} \times a_{kj} \]
6. End
7. End

Operation count:

\[T = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (2(n - k) + 3) = \ldots \]

Complete the above calculation. Order of the cost?
Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to \(n - 1 \) successive Gaussian transformations, i.e., multiplications with matrices of the form \(M_k = I - v^{(k)} e_k^T \), where the first \(k \) components of \(v^{(k)} \) equal zero.

Set \(A_0 \equiv A \)

\[
A \rightarrow M_1 A_0 = A_1 \rightarrow M_2 A_1 = A_2 \rightarrow M_3 A_2 = A_3 \cdots \\
\rightarrow M_{n-1} A_{n-2} = A_{n-1} \equiv U
\]

Last \(A_k \equiv U \) is an upper triangular matrix.
At each step we have: \(A_k = M_{k+1}^{-1} A_{k+1} \). Therefore:

\[
A_0 = M_1^{-1} A_1 = M_1^{-1} M_2^{-1} A_2 = M_1^{-1} M_2^{-1} M_3^{-1} A_3 = \ldots = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} A_{n-1}
\]

\[L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} \]

Note: \(L \) is **Lower triangular**, \(A_{n-1} \) is **upper triangular**

LU decomposition: \(A = LU \)
How to get L?

$L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$

- Consider only the first 2 matrices in this product.

- Note $M_k^{-1} = (I - v^{(k)} e_k^T)^{-1} = (I + v^{(k)} e_k^T)$. So:

\[
M_1^{-1} M_2^{-1} = (I + v^{(1)} e_1^T)(I + v^{(2)} e_2^T) = I + v^{(1)} e_1^T + v^{(2)} e_2^T.
\]

- Generally,

\[
M_1^{-1} M_2^{-1} \cdots M_k^{-1} = I + v^{(1)} e_1^T + v^{(2)} e_2^T + \cdots + v^{(k)} e_k^T
\]

The L factor is a lower triangular matrix with ones on the diagonal. Column k of L, contains the multipliers l_{ik} used in the k-th step of Gaussian elimination.

- There is an ‘algorithmic’ approach to understanding the LU factorization [see supplemental notes]
A matrix A has an LU decomposition if

$$\det(A(1: k, 1: k)) \neq 0 \quad \text{for} \quad k = 1, \ldots, n - 1.$$

In this case, the determinant of A satisfies:

$$\det A = \det(U) = \prod_{i=1}^{n} u_{ii}$$

If, in addition, A is nonsingular, then the LU factorization is unique.
Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A and different b's.

LU factorization of the matrix $A = \begin{pmatrix} 2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1 \end{pmatrix}$?

Determinant of A?

True or false: “Computing the LU factorization of matrix A involves more arithmetic operations than solving a linear system $Ax = b$ by Gaussian elimination”.
Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

\[
\begin{bmatrix}
2 & 4 & 4 \\
1 & 3 & 1 \\
1 & 5 & 6
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
-6
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
x & x & x & x \\
x & x & x & x \\
x & x & x & x
\end{bmatrix}
\]
\[\begin{align*}
\text{row}_2 & := \text{row}_2 - 0.5 \times \text{row}_1: \\
\text{row}_3 & := \text{row}_3 - 0.5 \times \text{row}_1:
\end{align*} \]

\[\begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6
\end{bmatrix} \quad \begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{bmatrix} \]

Step 2:

\[\begin{bmatrix}
2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{bmatrix} \quad \begin{bmatrix}
x & 0 & x & x \\
x & 0 & x & x \\
x & 0 & x & x
\end{bmatrix} \]

\[\begin{align*}
\text{row}_1 & := \text{row}_1 - 4 \times \text{row}_2: \\
\text{row}_3 & := \text{row}_3 - 3 \times \text{row}_2:
\end{align*} \]

\[\begin{bmatrix}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{bmatrix} \quad \begin{bmatrix}
2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7
\end{bmatrix} \]
There is now a third step:

To transform:

\[
\begin{bmatrix}
2 & 0 & 8 \\
0 & 1 & -1 \\
0 & 0 & 7 \\
\end{bmatrix}
\]

into:

\[
\begin{bmatrix}
x & 0 & 0 \\
0 & x & 0 \\
0 & 0 & x \\
\end{bmatrix}
\]

\(row_1 := row_1 - \frac{8}{7} \times row_3: \quad row_2 := row_2 - \frac{-1}{7} \times row_3:\)

\[
\begin{bmatrix}
2 & 0 & 0 & 10 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\end{bmatrix}
\]

Solution: \(x_3 = -1; \quad x_2 = -1; \quad x_1 = 5\)
Gauss-Jordan Elimination in a picture

\[A \]

Row \(k \)

Row \(i \)

\[\frac{a(i,k)}{a(k,k)} \]

\[a(k,k) \]
ALGORITHM : 3 ■ Gauss-Jordan elimination

1. For $k = 1 : n$ Do:
2. For $i = 1 : n$ and if $i! = k$ Do :
3. $piv := a_{ik}/a_{kk}$
4. For $j := k + 1 : n + 1$ Do :
5. $a_{ij} := a_{ij} - piv \ast a_{kj}$
6. End
7. End

Operation count:

$$T = \sum_{k=1}^{n} \sum_{i=1}^{n-1} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n} \sum_{i=1}^{n-1} (2(n-k) + 3) = \cdots$$

Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?
function x = gaussj (A, b)
%---
% function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
%---

n = size(A,1) ;
A = [A,b];
for k=1:n
 for i=1:n
 if (i ~= k)
 piv = A(i,k) / A(k,k) ;
 A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
 end
 end
end
x = A(:,n+1) ./ diag(A) ;
Consider again GE for the system:

\[
\begin{align*}
2x_1 + 2x_2 + 4x_3 & = 2 \\
x_1 + x_2 + x_3 & = 1 \\
x_1 + 4x_2 + 6x_3 & = -5
\end{align*}
\]

Or:

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
1 & 1 & 1 & 1 \\
1 & 4 & 6 & -5
\end{bmatrix}
\]

\[\text{row}_2 := \text{row}_2 - \frac{1}{2} \times \text{row}_1:\]

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
1 & 4 & 6 & -5
\end{bmatrix}
\]

\[\text{row}_3 := \text{row}_3 - \frac{1}{2} \times \text{row}_1:\]

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 0 & -1 & 0 \\
0 & 3 & 4 & -6
\end{bmatrix}
\]

\[\text{Pivot } a_{22} \text{ is zero. Solution: permute rows 2 and 3:}\]

\[
\begin{bmatrix}
2 & 2 & 4 & 2 \\
0 & 3 & 4 & -6 \\
0 & 0 & -1 & 0
\end{bmatrix}
\]
Partial Pivoting

General situation:

Always permute row k with row l such that

$$|a_{lk}| = \max_{i=k,...,n} |a_{ik}|$$

More ‘stable’ algorithm.
The matlab script *gaussp* will be provided. Explore it from the angle of an actual implementation in a language like C. Is it necessary to ‘physically’ move the rows? (moving data around is not free).
A permutation matrix is a matrix obtained from the identity matrix by permuting its rows.

For example, for the permutation $\pi = \{3, 1, 4, 2\}$ we obtain

\[
P = \begin{pmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

Important observation: the matrix PA is obtained from A by permuting its rows with the permutation π.

\[(PA)_{i,:} = A_{\pi(i,:),}
\]
What is the matrix PA when

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & -1 & 2 \\ -3 & 4 & -5 & 6 \end{pmatrix}$$

Any permutation matrix is the product of interchange permutations, which only swap two rows of I.

Notation: $E_{ij} =$ Identity with rows i and j swapped
Example: To obtain $\pi = \{3, 1, 4, 2\}$ from $\pi = \{1, 2, 3, 4\}$ – we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} = E_{1,2} \times E_{3,4} \times E_{2,3}$$

In the previous example where

$$>> A = \begin{bmatrix} 1 & 2 & 3 & 4; 5 & 6 & 7 & 8; 9 & 0 & -1 & 2; -3 & 4 & -5 & 6 \end{bmatrix}$$

Matlab gives $\det(A) = -896$. What is $\det(PA)$?
At each step of G.E. with partial pivoting:

\[M_{k+1} E_{k+1} A_k = A_{k+1} \]

where \(E_{k+1} \) encodes a swap of row \(k + 1 \) with row \(l > k + 1 \).

Notes: (1) \(E_i^{-1} = E_i \) and (2) \(M_j^{-1} \times E_{k+1} = E_{k+1} \times \tilde{M}_j^{-1} \) for \(k \geq j \), where \(\tilde{M}_j \) has a permuted Gauss vector:

\[
(I + v^{(j)} e_j^T) E_{k+1} = E_{k+1} (I + E_{k+1} v^{(j)} e_j^T) \\
\equiv E_{k+1} (I + \tilde{v}^{(j)} e_j^T) \\
\equiv E_{k+1} \tilde{M}_j
\]

Here we have used the fact that above row \(k + 1 \), the permutation matrix \(E_{k+1} \) looks just like an identity matrix.
Result:

\[
A_0 = E_1M_1^{-1}A_1 \\
= E_1M_1^{-1}E_2M_2^{-1}A_2 = E_1E_2\tilde{M}_1^{-1}M_2^{-1}A_2 \\
= E_1E_2\tilde{M}_1^{-1}M_2^{-1}E_3M_3^{-1}A_3 \\
= E_1E_2E_3\tilde{M}_1^{-1}\tilde{M}_2^{-1}M_3^{-1}A_3 \\
= \ldots \\
= E_1 \cdots E_{n-1} \times \tilde{M}_1^{-1}\tilde{M}_2^{-1}\tilde{M}_3^{-1} \cdots \tilde{M}_{n-1}^{-1} \times A_{n-1}
\]

\[\textbf{In the end} \]

\[
PA = LU \text{ with } P = E_{n-1} \cdots E_1
\]
Special case of banded matrices

- Banded matrices arise in many applications.

- \(A \) has upper bandwidth \(q \) if \(a_{ij} = 0 \) for \(j - i > q \).

- \(A \) has lower bandwidth \(p \) if \(a_{ij} = 0 \) for \(i - j > p \).

Explain how GE would work on a banded system (you want to avoid operations involving zeros) – Hint: see picture

- Simplest case: tridiagonal \(p = q = 1 \).
First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

2. For $i = 2 : n$ Do:
3. $a_{i1} := a_{i1}/a_{11}$ (pivots)
4. For $j := 2 : n$ Do:
5. $a_{ij} := a_{ij} - a_{i1} \times a_{1j}$
6. End
7. End

If A has upper bandwidth q and lower bandwidth p then so is the resulting $[L/U]$ matrix. Band form is preserved (induction)

Operation count?
What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth $p + q$. L has at most $p + 1$ nonzero elements per column (bandedness is lost).

Simplest case: tridiagonal $p = q = 1$.

Example:

$$A = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1
\end{pmatrix}$$