SOLVING LINEAR SYSTEMS OF EQUATIONS

- Background on linear systems

- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting - permutation matrices.
- Case of banded systems

Background: Linear systems

The Problem: \boldsymbol{A} is an $\boldsymbol{n} \times n$ matrix, and b a vector of \mathbb{R}^{n}. Find x such that:

$$
A x=b
$$

$>x$ is the unknown vector, \boldsymbol{b} the right-hand side, and \boldsymbol{A} is the coefficient matrix

Example:

Solution of above system?3-2
Example: (1)
olution $x=\binom{0.5}{2}$
Example: (2) Case where \boldsymbol{A} is singular $\& b \in \operatorname{Ran}(A)$:

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right), \quad b=\binom{1}{0}
$$

$>$ infinitely many solutions: $x(\alpha)=\binom{0.5}{\alpha} \quad \forall \alpha$.
Example: (3) Let A same as above, but $b=\binom{1}{1}$.

[^0] 3-4

Triangular linear systems

Example:

$$
\left(\begin{array}{rrr}
2 & 4 & 4 \\
0 & 5 & -2 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
4
\end{array}\right)
$$

One equation can be trivially solved: the last one.

$$
x_{3}=2
$$

x_{3} is known we can now solve the 2 nd equation:

$$
5 x_{2}-2 x_{3}=1 \rightarrow 5 x_{2}-2 \times 2=1 \rightarrow x_{2}=1
$$

Finally x_{1} can be determined similarly:

$$
2 x_{1}+4 x_{2}+4 x_{3}=2 \rightarrow \ldots \rightarrow x_{1}=-5
$$

3-5
Column version of back-substitution
Back-Substitution algorithm. Column version

$$
\begin{aligned}
& \text { For } j=n:-1: 1 \text { do: } \\
& \quad x_{j}=b_{j} / a_{j j} \\
& \quad \text { For } i=1: j-1 \text { do } \\
& \quad b_{i}:=b_{i}-x_{j} * a_{i j} \\
& \text { End } \\
& \text { End }
\end{aligned}
$$

Linear Systems of Equations: Gaussian Elimination
> Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

$$
\left\{\begin{aligned}
2 x_{1}+4 x_{2}+4 x_{3} & =2 \\
x_{1}+3 x_{2}+1 x_{3} & =1 \\
x_{1}+5 x_{2}+6 x_{3} & =-6
\end{aligned} \text { tableau: } \begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}\right.
$$

$>$ Analogous algorithms for lower triangular systems.
> Main operation used: scaling and adding rows.

Example: Replace row by: row2 $-\frac{1}{2}$ *row 1 :

$$
\begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array} \rightarrow \begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}
$$

This is equivalent to:

$$
\begin{array}{|rll}
1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\left|\times \begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array}\right|=\begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array}
$$

$>$ The left-hand matrix is of the form $M=I-v e_{1}^{T}$ with $v=\left(\begin{array}{c}0 \\ \frac{1}{2} \\ 0\end{array}\right)$
3-9
Equivalent to

$$
\begin{aligned}
& \begin{array}{|ccc|}
\hline 1 & 0 & 0 \\
-\frac{1}{2} & 1 & 0 \\
-\frac{1}{2} & 0 & 1
\end{array}\left|\times \begin{array}{|ccc|c|}
\hline 2 & 4 & 4 & 2 \\
1 & 3 & 1 & 1 \\
1 & 5 & 6 & -6
\end{array}\right|=\begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\hline
\end{array} \\
& {[A, b] \rightarrow\left[M_{1} A, M_{1} b\right] ; M_{1}=I-v^{(1)} e_{1}^{T} ; v^{(1)}=\left(\begin{array}{c}
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right)}
\end{aligned}
$$

New system $\boldsymbol{A}_{1} \boldsymbol{x}=b_{1}$. Step 2 must now transform:

$$
\begin{array}{|ccr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{array} \text { into: } \begin{array}{|ccc|c|}
\hline x & x & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
\hline
\end{array}
$$

Gaussian Elimination in a picture

The LU factorization

$>$ Now ignore the right-hand side from the transformations.
Observation: Gaussian elimination is equivalent to $n-1$ successive Gaussian transformations, i.e., multiplications with matrices of the form $M_{k}=$ $I-v^{(k)} e_{k}^{T}$, where the first k components of $v^{(k)}$ equal zero.
$>\operatorname{Set} A_{0} \equiv A$

$$
\begin{aligned}
A \rightarrow M_{1} A_{0}=A_{1} & \rightarrow M_{2} A_{1}=A_{2} \rightarrow M_{3} A_{2}=A_{3} \cdots \\
& \rightarrow M_{n-1} A_{n-2}=A_{n-1} \equiv U
\end{aligned}
$$

$>$ Last $\boldsymbol{A}_{k} \equiv \boldsymbol{U}$ is an upper triangular matrix.

ALGORITHM:2. Gaussian Elimination

$$
\begin{aligned}
& \text { For } k=1: n-1 \text { Do: } \\
& \text { For } i=k+1: n \text { Do: } \\
& \text { piv }:=a_{i k} / a_{k k} \\
& \text { For } j:=k+1: n+1 \text { Do : } \\
& a_{i j}:=a_{i j}-p i v * a_{k j} \\
& \text { End } \\
& \text { End } \\
& \text { End }
\end{aligned}
$$

> Operation count:

$$
T=\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}\left[1+\sum_{j=k+1}^{n+1} 2\right]=\sum_{k=1}^{n-1} \sum_{i=k+1}^{n}(2(n-k)+3)=\ldots
$$

Complete the above calculation. Order of the cost?
$>$ At each step we have: $A_{k}=M_{k+1}^{-1} A_{k+1}$. Therefore:

$$
\begin{aligned}
A_{0} & =M_{1}^{-1} A_{1} \\
& =M_{1}^{-1} M_{2}^{-1} A_{2} \\
& =M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} A_{3} \\
& =\cdots \\
& =M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} \cdots M_{n-1}^{-1} A_{n-1} \\
& L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} \cdots M_{n-1}^{-1}
\end{aligned}
$$

$>$
$>$ Note: L is Lower triangular, \boldsymbol{A}_{n-1} is upper triangular
$>$ LU decomposition : $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$

How to get L?

$$
L=M_{1}^{-1} M_{2}^{-1} M_{3}^{-1} \cdots M_{n-1}^{-1}
$$

> Consider only the first 2 matrices in this product.
$>$ Note $M_{k}^{-1}=\left(I-v^{(k)} e_{k}^{T}\right)^{-1}=\left(I+v^{(k)} e_{k}^{T}\right)$. So:
$M_{1}^{-1} M_{2}^{-1}=\left(I+v^{(1)} e_{1}^{T}\right)\left(I+v^{(2)} e_{2}^{T}\right)=I+v^{(1)} e_{1}^{T}+v^{(2)} e_{2}^{T}$.
\Rightarrow Generally, $\quad M_{1}^{-1} M_{2}^{-1} \cdots M_{k}^{-1}=I+v^{(1)} e_{1}^{T}+v^{(2)} e_{2}^{T}+\cdots v^{(k)} e_{k}^{T}$

The L factor is a lower triangular matrix with ones on the diagonal. Column k of \boldsymbol{L}, contains the multipliers $l_{i k}$ used in the k-th step of Gaussian elimination.
$>$ There is an 'algorithmic' approach to understanding the LU factorization [see supplemental notes]
3-17
\qquad the same matrix A and different b 's.
\&5 LU factorization of the matrix $A=\left(\begin{array}{lll}2 & 4 & 4 \\ 1 & 5 & 6 \\ 1 & 3 & 1\end{array}\right)$?Determinant of \boldsymbol{A} ?True or false: "Computing the LU factorization of matrix \boldsymbol{A} involves more arithmetic operations than solving a linear system $\boldsymbol{A x}=\boldsymbol{b}$ by Gaussian elimination".

A matrix \boldsymbol{A} has an LU decomposition if

$$
\operatorname{det}(A(1: k, 1: k)) \neq 0 \quad \text { for } k=1, \cdots, n-1
$$

In this case, the determinant of \boldsymbol{A} satisfies:

$$
\operatorname{det} A=\operatorname{det}(U)=\prod_{i=1}^{n} u_{i i}
$$

If, in addition, \boldsymbol{A} is nonsingular, then the LU factorization is unique.

Gauss-Jordan Elimination

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

2	4	4	2					
1	3	1	1					
1	5	6	-6	into:	x	x	x	x
:---:	:---:	:---:	:---:					
0	x	x	x					
0	x	x	x					

row $_{2}:=$ row $_{2}-0.5 \times$ row $_{1}: \quad$ row $_{3}:=$ row $_{3}-0.5 \times$ row $_{1}:$

$$
\left.\begin{array}{|rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
1 & 5 & 6 & -6 \\
\hline
\end{array} \quad \right\rvert\, \begin{array}{rrr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\hline
\end{array}
$$

$$
\text { Step 2: } \begin{array}{|ccr|c|}
\hline 2 & 4 & 4 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7
\end{array} \text { into: } \begin{array}{|ccc|c|}
\hline x & 0 & x & x \\
0 & x & x & x \\
0 & 0 & x & x \\
\hline
\end{array}
$$

row $_{1}:=$ row $_{1}-4 \times$ row $_{2}: \quad$ row $_{3}:=$ row $_{3}-3 \times$ row $_{2}$:

$$
\begin{array}{|rrr|c|}
\hline 2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 3 & 4 & -7 \\
\hline
\end{array} \quad \begin{array}{|rrr|c|}
\hline 2 & 0 & 8 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 7 & -7 \\
\hline
\end{array}
$$

ALGORITHM : 3. Gauss-Jordan elimination

$$
\begin{aligned}
& \text { For } k=1: n \text { Do: } \\
& \qquad \begin{array}{l}
\text { For } i=1: n \text { and if } i!=k \text { Do: } \\
\quad \text { piv }:=a_{i k} / a_{k k} \\
\quad \text { For } j:=k+1: n+1 \text { Do : } \\
\quad a_{i j}:=a_{i j}-p i v * a_{k j} \\
\text { End } \\
\text { End } \\
\text { End }
\end{array} \text { (}
\end{aligned}
$$

> Operation count:

$$
T=\sum_{k=1}^{n} \sum_{i=1}^{n-1}\left[1+\sum_{j=k+1}^{n+1} 2\right]=\sum_{k=1}^{n} \sum_{i=1}^{n-1}(2(n-k)+3)=\cdots
$$

- Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination?

```
function x = gaussj (A, b)
% function x = gaussj (A, b)
% solves A x = b by Gauss-Jordan elimination
    n = size(A,1) ;
    A = [A,b];
    for k=1:n
        for i=1:n
            if (i ~}=k
                    piv = A(i,k) / A(k,k) ;
                    A(i,k+1:n+1)=A(i,k+1':n+1) - piv*A(k,k+1:n+1);
                end
        end
    end
    x = A(:, n+1) ./ diag(A) ;
```

$3-25$
Gaussian Elimination with Partial Pivoting

Partial Pivoting

General situation:

Always permute row k with row l such that
$\left|a_{l k}\right|=\max _{i=k, \ldots, n}\left|a_{i k}\right|$

Gaussian Elimination: Partial Pivoting

Consider again GE for the system:

$$
\left\{\begin{aligned}
2 x_{1}+2 x_{2}+4 x_{3} & =2 \\
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+4 x_{2}+6 x_{3} & =-5
\end{aligned} \text { Or: } \begin{array}{|ccc|c|}
\hline 2 & 2 & 4 & 2 \\
1 & 1 & 1 & 1 \\
1 & 4 & 6 & -5
\end{array}\right.
$$

$>$ row $_{2}:=$ row $_{2}-\frac{1}{2} \times$ row $_{1}$:

2	2	4	2
0	0	-1	0
1	4	6	-5

$>$ Pivot a_{22} is zero. Solution : permute rows 2 and 3 :

[^1]A0 9 The matlab script gaussp will be provided. Explore it from the angle of an actual implementation in a language like C. Is it necessary to 'physically' move the rows? (moving data around is not free).
$>$ More 'stable' algorithm.

Pivoting and permutation matrices

$>$ A permutation matrix is a matrix obtained from the identity matrix by permuting its rows
$>$ For example for the permutation $\pi=\{3,1,4,2\}$ we obtain

$$
P=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

$>$ Important observation: the matrix $\boldsymbol{P} \boldsymbol{A}$ is obtained from \boldsymbol{A} by permuting its rows with the permutation π

$$
(P A)_{i,:}=A_{\pi(i),}
$$

${ }^{3-29}$ GvL 3. $\{1,3,5\}$ - Systems

Example: To obtain $\pi=\{3,1,4,2\}$ from $\pi=\{1,2,3,4\}$ - we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:

$$
P=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)=E_{1,2} \times E_{3,4} \times E_{2,3}
$$In the previous example where

$\gg A=\left[\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 ; & 0 & -1 & 2 & ; & -3 & 4 & -5\end{array}\right]$
Matlab gives $\operatorname{det}(A)=-896$. What is $\operatorname{det}(P A) ?$
\square_{010} What is the matrix $\boldsymbol{P A}$ when

$$
P=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right) \quad A=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 0 & -1 & 2 \\
-3 & 4 & -5 & 6
\end{array}\right) ?
$$

$>$ Any permutation matrix is the product of interchange permutations, which only swap two rows of I.
$>$ Notation: $\boldsymbol{E}_{i j}=$ Identity with rows i and j swapped
3-30

$>$ At each step of G.E. with partial pivoting:

$$
\boldsymbol{M}_{k+1} \boldsymbol{E}_{k+1} \boldsymbol{A}_{\boldsymbol{k}}=\boldsymbol{A}_{k+1}
$$

where \boldsymbol{E}_{k+1} encodes a swap of row $\boldsymbol{k}+1$ with row $l>k+1$.
$>$ Notes: (1) $\boldsymbol{E}_{i}^{-1}=\boldsymbol{E}_{i}$ and (2) $\boldsymbol{M}_{j}^{-1} \times \boldsymbol{E}_{k+1}=\boldsymbol{E}_{k+1} \times \tilde{\boldsymbol{M}}_{j}^{-1}$ for $\boldsymbol{k} \geq j$, where \tilde{M}_{j} has a permuted Gauss vector:

$$
\begin{aligned}
\left(I+v^{(j)} e_{j}^{T}\right) E_{k+1} & =E_{k+1}\left(I+E_{k+1} v^{(j)} e_{j}^{T}\right) \\
& \equiv E_{k+1}\left(I+\tilde{v}^{(j)} e_{j}^{T}\right) \\
& \equiv E_{k+1} \tilde{M}_{j}
\end{aligned}
$$

$>$ Here we have used the fact that above row $k+1$, the permutation matrix \boldsymbol{E}_{k+1} looks just like an identity matrix.

Result:

$$
\begin{aligned}
A_{0} & =E_{1} M_{1}^{-1} A_{1} \\
& =E_{1} M_{1}^{-1} E_{2} M_{2}^{-1} A_{2}=E_{1} E_{2} \tilde{M}_{1}^{-1} M_{2}^{-1} A_{2} \\
& =E_{1} E_{2} \tilde{M}_{1}^{-1} M_{2}^{-1} E_{3} M_{3}^{-1} A_{3} \\
& =E_{1} E_{2} E_{3} \tilde{M}_{1}^{-1} \tilde{M}_{2}^{-1} M_{3}^{-1} A_{3} \\
& =\cdots \\
& =E_{1} \cdots E_{n-1} \times \tilde{M}_{1}^{-1} \tilde{M}_{2}^{-1} \tilde{M}_{3}^{-1} \cdots \tilde{M}_{n-1}^{-1} \times A_{n-1}
\end{aligned}
$$

$>$ In the end

$$
P A=L U \text { with } P=E_{n-1} \cdots E_{1}
$$

3-33
> First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

$$
\begin{aligned}
& \text { For } i=2: n \text { Do: } \\
& \quad a_{i 1}:=a_{i 1} / a_{11} \text { (pivots) } \\
& \text { For } j:=2: n \text { Do : } \\
& \quad a_{i j}:=a_{i j}-a_{i 1} * a_{1 j} \\
& \text { End }
\end{aligned}
$$

End
$>$ If \boldsymbol{A} has upper bandwidth \boldsymbol{q} and lower bandwidth \boldsymbol{p} then so is the resulting $[\boldsymbol{L} / \boldsymbol{U}]$ matrix. $>$ Band form is preserved (induction)Operation count?

Special case of banded matrices

$>$ Banded matrices arise in many applications
$>\boldsymbol{A}$ has upper bandwidth \boldsymbol{q} if $a_{i j}=0$ for $j-i>q$
$>A$ has lower bandwidth p if $a_{i j}=0$ for $i-j>p$

E12 Explain how GE would work on a banded system (you want to avoid operations involving zeros) Hint: see picture

Simplest case: tridiagonal $>p=q=1$.
3-34 \qquad GvL 3. $\{1,3,5\}$ - System
What happens when partial pivoting is used?

If \boldsymbol{A} has lower bandwidth \boldsymbol{p}, upper bandwidth \boldsymbol{q}, and if Gaussian elimination with partial pivoting is used, then the resulting \boldsymbol{U} has upper bandwidth $\boldsymbol{p}+\boldsymbol{q} . L$ has at most $p+1$ nonzero elements per column (bandedness is lost).
$>$ Simplest case: tridiagonal $>p=q=1$.

Example:

$$
A=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 \\
0 & 0 & 0 & 2 & 1
\end{array}\right)
$$

[^0]: $>$ No solutions since 2nd equation cannot be satisfied

[^1]: 3-26

