FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

- Brief review of floating point arithmetic
- Model of floating point arithmetic
- Notation, backward and forward errors

Floating point representation:

Real numbers are represented in two parts: A mantissa (significand) and an exponent. If the representation is in the base β then:

$$x=\pm (.d_1d_2\cdots d_t)eta^e$$

- $ightharpoonup .d_1d_2\cdots d_t$ is a fraction in the base- β representation (Generally the form is normalized in that $d_1 \neq 0$), and e is an integer
- ➤ Often, more convenient to rewrite the above as:

$$x=\pm (m/eta^t) imeseta^e\equiv \pm m imeseta^{e-t}$$

► Mantissa m is an integer with $0 \le m \le \beta^t - 1$.

Roundoff errors and floating-point arithmetic

- The basic problem: The set A of all possible representable numbers on a given machine is finite but we would like to use this set to perform standard arithmetic operations $(+,^*,-,/)$ on an infinite set. The usual algebra rules are no longer satisfied since results of operations are rounded.
- > Basic algebra breaks down in floating point arithmetic.

Example: In floating point arithmetic.

$$a + (b + c)! = (a + b) + c$$

Matlab experiment: For 10,000 random numbers find number of instances when the above is true. Same thing for the multiplication..

4-2 _____ GvL 2.7 – Float

Machine precision - machine epsilon

- Notation: fl(x) = closest floating point representation of real number x ('rounding')
- \triangleright When a number x is very small, there is a point when 1+x==1 in a machine sense. The computer no longer makes a difference between 1 and 1+x.

Machine epsilon: The smallest number ϵ such that $1+\epsilon$ is a float that is different from one, is called machine epsilon. Denoted by macheps or eps, it represents the distance from 1 to the next larger floating point number.

Gyl 27 - Float

 \triangleright With previous representation, eps is equal to $\beta^{-(t-1)}$.

Example: In IEEE standard double precision, $\beta = 2$, and t = 53 (includes 'hidden bit'). Therefore eps = 2^{-52} .

Unit Round-off A real number x can be approximated by a floating number fl(x)with relative error no larger than $\underline{\mathbf{u}} = \frac{1}{2}\beta^{-(t-1)}$.

- ➤ u is called Unit Round-off.
- ➤ In fact can easily show:

$$fl(x) = x(1+\delta)$$
 with $|\delta| < \underline{\mathrm{u}}$

Matlab experiment: find the machine epsilon on your computer.

➤ What conditions/ rules should be satisfied by floating point arithmetic? The IEEE standard is a set of standards adopted by many CPU manufacturers.

GvL 2.7 - Float

Example: Consider the sum of 3 numbers: y = a + b + c.

 \triangleright Done as fl(a+b+c)=fl(fl(a+b)+c)

$$egin{aligned} fl(a+b) &= (a+b)(1+\epsilon_1) \ fl(a+b+c) &= [(a+b)(1+\epsilon_1)+c] \, (1+\epsilon_2) \ &= a(1+\epsilon_1)(1+\epsilon_2) + b(1+\epsilon_1)(1+\epsilon_2) \ &+ c(1+\epsilon_2) \ &= a(1+ heta_1) + b(1+ heta_2) + c(1+ heta_3) \end{aligned}$$

with
$$1+\theta_1=1+\theta_2=(1+\epsilon_1)(1+\epsilon_2)$$
 and $1+\theta_3=(1+\epsilon_2)$

> For a longer sum we would have something like:

$$1+\theta_i=(1+\epsilon_1)(1+\epsilon_2)(\cdots)(1+\epsilon_{n-i})$$

We will study such products shortly

GvL 2.7 - Float 4-7

Among IEEE rules:

Rule 1.

$$fl(x) = x(1+\epsilon), \quad ext{where} \quad |\epsilon| \leq \underline{\mathrm{u}}$$

Rule 2.

$$fl(x\odot y)=(x\odot y)(1+\epsilon_{\odot}), ext{ where } |\epsilon_{\odot}|\leq \underline{\mathrm{u}} \qquad egin{array}{c} ext{for } \odot=\ +,-,*, \end{array}$$

Rule 3. For +, * operations:

$$fl(a\odot b)=fl(b\odot a)$$

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly generated numbers a_i , b_i .

GvL 2.7 - Float

 \triangleright Remark on order of the sum. If $y_1 = fl(fl(a+b)+c)$:

$$egin{aligned} y1 &= \left[(a+b+c) + (a+b)\epsilon_1
ight] (1+\epsilon_2) \ &= \left(a+b+c
ight) \left[1 + rac{a+b}{a+b+c} \epsilon_1 (1+\epsilon_2) + \epsilon_2
ight] \end{aligned}$$

So disregarding the high order term $\epsilon_1 \epsilon_2$

$$fl(fl(a+b)+c) = (a+b+c)(1+\epsilon_3) \ \epsilon_3 pprox rac{a+b}{a+b+c}\epsilon_1 + \epsilon_2$$

GvL 2.7 - Float

 \blacktriangleright If we redid the computation as $y_2 = fl(a + fl(b + c))$ we would find

$$fl(a+fl(b+c)) = (a+b+c)(1+\epsilon_4) \ \epsilon_4 pprox rac{b+c}{a+b+c} \epsilon_1 + \epsilon_2$$

- The error is <u>amplified</u> by the factor (a+b)/y in the first case and (b+c)/y in the second case.
- \triangleright In order to sum n numbers accurately, it is better to start with small numbers first. [However, sorting before adding is not worth it.]
- ➤ But watch out if the numbers have mixed signs!

4-9 ______ GvL 2.7 – Float

Backward and forward errors

Assume the approximation \hat{y} to y = alg(x) is computed by some algorithm with arithmetic precision ϵ . Possible analysis: find an upper bound for the Forward error

$$|\Delta y| = |y - \hat{y}|$$

➤ This is not always easy.

4-11

Alternative question: find equivalent perturbation on initial data (x) that produces the result \hat{y} . In other words, find Δx so that:

$$\operatorname{alg}(x+\Delta x)=\hat{y}$$

The value of $|\Delta x|$ is called the backward error. An analysis to find an upper bound for $|\Delta x|$ is called Backward error analysis.

The absolute value notation

- For a given vector x, |x| is the vector with components $|x_i|$, i.e., |x| is the component-wise absolute value of x.
- ➤ Similarly for matrices:

$$|A| = \{|a_{ij}|\}_{i=1,...,m;\ j=1,...,n}$$

> An obvious result: The basic inequality

$$|fl(a_{ij}) - a_{ij}| \leq \underline{\mathrm{u}} ||a_{ij}||$$

translates into

$$|fl(A) - A| \leq \underline{\mathrm{u}} |A|$$

 $ightharpoonup A \leq B$ means $a_{ij} \leq b_{ij}$ for all $1 \leq i \leq m; \ 1 \leq j \leq n$

4-10 _____ GvL 2.7 – Float

Example:

GvL 2.7 - Float

$$A = egin{pmatrix} a & b \ 0 & c \end{pmatrix} \quad B = egin{pmatrix} d & e \ 0 & f \end{pmatrix}$$

Consider the product: fl(A.B) =

with $\epsilon_i \leq \underline{\mathbf{u}}$, for i=1,...,5. Result can be written as:

$$\left[egin{array}{c|c} a & b(1+\epsilon_3)(1+\epsilon_4) \ \hline 0 & c(1+\epsilon_5) \end{array}
ight] \left[egin{array}{c|c} d(1+\epsilon_1) & e(1+\epsilon_2)(1+\epsilon_4) \ \hline 0 & f \end{array}
ight]$$

- ► So $fl(A.B) = (A + E_A)(B + E_B)$.
- \triangleright Backward errors E_A, E_B satisfy:

$$|E_A| \leq 2\underline{\mathrm{u}}\,|A| + O(\underline{\mathrm{u}}^{\,2})\,; \qquad |E_B| \leq 2\underline{\mathrm{u}}\,|B| + O(\underline{\mathrm{u}}^{\,2})$$

4-12 GvL 2.7 – Float

ightharpoonup When solving Ax=b by Gaussian Elimination, we will see that a bound on $\|e_x\|$ such that this holds exactly:

$$A(x_{
m computed} + e_x) = b$$

is much harder to find than bounds on $||E_A||$, $||e_b||$ such that this holds exactly:

$$(A + E_A)x_{\text{computed}} = (b + e_b).$$

Note: In many instances backward errors are more meaningful than forward errors: if initial data is accurate only to 4 digits say, then my algorithm for computing x need not guarantee a backward error of less then 10^{-10} for example. A backward error of order 10^{-4} is acceptable.

4-13 GvL 2.7 – Float

➤ Can use the following simpler result:

Lemma: If
$$|\delta_i| \leq \underline{\mathrm{u}}$$
 and $n\underline{\mathrm{u}} < .01$ then

$$\Pi_{i=1}^n(1+\delta_i)=1+ heta_n$$
 where $| heta_n|\leq 1.01n$ $\underline{\mathrm{u}}$

Example: Previous sum of numbers can be written

$$egin{aligned} fl(a+b+c) &= fl(fl(a+b)+c) \ &= [(a+b)(1+\epsilon_1)+c]\,(1+\epsilon_2) \ &= a(1+\epsilon_1)(1+\epsilon_2)+b(1+\epsilon_1)(1+\epsilon_2)+ \ &c(1+\epsilon_2) \ &= a(1+\theta_1)+b(1+\theta_2)+c(1+\theta_3) \ &= ext{exact sum of slightly perturbed inputs,} \end{aligned}$$

where all θ_i 's satisfy $|\theta_i| \leq 1.01 n \underline{\mathrm{u}}$ (here n=2) – Alternative $|\theta_i| \leq \gamma_n$

Error Analysis: Inner product

➤ Inner products are in the innermost parts of many calculations. Their analysis is important.

Lemma: If $|\delta_i| \leq \underline{\mathrm{u}}$ and $n\underline{\mathrm{u}} < 1$ then

$$\Pi_{i=1}^n(1+\delta_i)=1+ heta_n$$
 where $| heta_n|\leq rac{n \underline{\mathrm{u}}}{1-n \underline{\mathrm{u}}}$

GvL 2.7 - Float

ightharpoonup Common notation $\gamma_n \equiv rac{n_{
m u}}{1-n_{
m u}}$

Prove the lemma [Hint: use induction]

➤ Backward error result (output is exact sum of perturbed input)

Plackward error result (output is exact sum or perturbed inpu

Alternatively, can write 'forward' bound:
$$|fl(a+b+c) - (a+b+c)| \le |a\theta_1| + |b\theta_2| + |c\theta_3|$$
.

(bound on | output - exact sum |)

4-16 _____ GvL 2.7 – Float

Analysis of inner products (cont.)

Consider

$$s_n = fl(x_1*y_1+x_2*y_2+\cdots+x_n*y_n)$$

- \triangleright In what follows η_i 's come from *, ϵ_i 's come from +
- ightharpoonup They satisfy: $|\eta_i| \leq \underline{\mathbf{u}}$ and $|\epsilon_i| \leq \underline{\mathbf{u}}$.
- \triangleright The inner product s_n is computed as:
- 1. $s_1 = fl(x_1y_1) = (x_1y_1)(1+\eta_1)$
- 2. $s_2 = fl(s_1 + fl(x_2y_2)) = fl(s_1 + x_2y_2(1 + \eta_2))$ = $(x_1y_1(1 + \eta_1) + x_2y_2(1 + \eta_2))(1 + \epsilon_2)$ = $x_1y_1(1 + \eta_1)(1 + \epsilon_2) + x_2y_2(1 + \eta_2)(1 + \epsilon_2)$
- 3. $s_3 = fl(s_2 + fl(x_3y_3)) = fl(s_2 + x_3y_3(1+\eta_3))$ = $(s_2 + x_3y_3(1+\eta_3))(1+\epsilon_3)$

➤ For each of these products

$$(1+\eta_i) \prod_{j=i}^n (1+\epsilon_j) = 1+\theta_i,$$
 with $|\theta_i| \leq \gamma_n$ so:

$$s_n = \sum_{i=1}^n x_i y_i (1+\theta_i)$$
 with $|\theta_i| \leq \gamma_n$ or:

$$fl\left(\sum_{i=1}^n x_i y_i
ight) = \sum_{i=1}^n x_i y_i + \sum_{i=1}^n x_i y_i heta_i$$
 with $| heta_i| \leq \gamma_n$

➤ This leads to the final result (forward form)

$$\left|fl\left(\sum_{i=1}^n x_i y_i
ight) - \sum_{i=1}^n x_i y_i
ight| \leq \gamma_n \sum_{i=1}^n |x_i| |y_i|$$

> or (backward form)

$$fl\left(\sum_{i=1}^n x_i y_i
ight) = \sum_{i=1}^n x_i y_i (1+ heta_i) \quad ext{with} \quad | heta_i| \leq \gamma_n$$

Expand:
$$s_3=x_1y_1(1+\eta_1)(1+\epsilon_2)(1+\epsilon_3) \ +x_2y_2(1+\eta_2)(1+\epsilon_2)(1+\epsilon_3) \ +x_3y_3(1+\eta_3)(1+\epsilon_3)$$

 \blacktriangleright Induction would show that [with convention that $\epsilon_1 \equiv 0$]

$$s_n = \sum_{i=1}^n x_i y_i (1+\eta_i) \, \prod_{j=i}^n (1+\epsilon_j)$$

 $oldsymbol{Q}$: How many terms in the coefficient of x_iy_i do we have?

- When i > 1: 1 + (n i + 1) = n i + 2
 - ullet When i=1: n (since $\epsilon_1=0$ does not count)
- \triangleright Bottom line: always < n.

-18 ______ GvL 2.7 – Float

Main result on inner products:

➤ Backward error expression:

GvL 2.7 - Float

$$fl(x^Ty) = [x . * (1 + d_x)]^T [y . * (1 + d_y)]$$

where $\|d_{\square}\|_{\infty} \leq \gamma_n, \ \square = x, y.$

- \triangleright Equality valid even if one of the d_x, d_y absent.
- ➤ Forward error expression:

$$|fl(x^Ty) - x^Ty| \le \gamma_n |x|^T |y|$$

- \triangleright Alternative for results above: replace γ_n by 1.01u.
- ▶ Above assumes $n\underline{\mathbf{u}} \leq .01$. When $\underline{\mathbf{u}} \approx 10^{-16}$, this holds for $n \leq 10^{14}$.

4-19 ______ GvL 2.7 – Float

4-20

GvL 2.7 – Float

ightharpoonup Consequence for matrix products: $(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p})$

$$|fl(AB) - AB| \le \gamma_n |A||B|$$

➤ Another way to write the result (less precise) is

$$|fl(x^Ty) - x^Ty| \leq |n|\underline{\mathrm{u}}||x|^T||y| + O(\underline{\mathrm{u}}^{\,2})$$

Assume you use single precision for which you have $\underline{\mathbf{u}}=2.\times 10^{-6}$. What is the largest n for which $n\underline{\mathbf{u}}\leq 0.01$ holds? Any conclusions for the use of single precision arithmetic?

What does the main result on inner products imply for the case when y = x? [Contrast the relative accuracy you get in this case vs. the general case when $y \neq x$]

4-21 GvL 2.7 – Float 4-22 GvL 2.7 – Float

Show for any x,y, there exist $\Delta x, \Delta y$ such that

$$fl(x^Ty) = (x + \Delta x)^Ty$$
, with $|\Delta x| \le \gamma_n |x|$
 $fl(x^Ty) = x^T(y + \Delta y)$, with $|\Delta y| \le \gamma_n |y|$

(Continuation) Let A an $m \times n$ matrix, x an n-vector, and y = Ax. Show that there exist a matrix ΔA such

$$fl(y) = (A + \Delta A)x$$
, with $|\Delta A| \leq \gamma_n |A|$

(Continuation) From the above derive a result about a column of the product of two matrices A and B. Does a similar result hold for the product AB as a whole?

Error Analysis for linear systems: Triangular case

> Recall

ALGORITHM: 1 • Back-Substitution algorithm

For
$$i=n:-1:1$$
 do: $t:=b_i$ For $j=i+1:n$ do $t:=t-a_{ij}x_j$ Find $t:=t-a_{ij}x_j$ $t:=t-(a_{i,i+1:n},x_{i+1:n})$ $t:=t-a_{ij}x_{ij}$ $t:=t-a_{ij}x_{ij}$ $t:=t-a_{ij}x_{ij}$ $t:=t-a_{ij}x_{ij}$ $t:=t-a_{ij}x_{ij}$ $t:=t-a_{ij}x_{ij}$ $t:=t-a_{ij}x_{ij}$

- ightharpoonup We must require that each $a_{ii} \neq 0$
- \triangleright Round-off error (use previous results for (\cdot, \cdot))?

GvL 2.7 – Float 4-24 _______ GvL 2.7 – Float

The computed solution \hat{x} of the triangular system Ux=b computed by the back-substitution algorithm satisfies:

$$(U+E)\hat{x}=b$$

with

$$|E| \le n \underline{\mathrm{u}} |U| + O(\underline{\mathrm{u}}^{2})$$

- ➤ Backward error analysis. Computed *x* solves a slightly perturbed system.
- ➤ Backward error not large in general. It is said that triangular solve is "backward stable".

4-25 ______ GvL 2.7 - Float 4-26 _____ GvL 2.7 - Float

- "Backward" error estimate.
- $\triangleright |\hat{L}|$ and $|\hat{U}|$ are not known in advance they can be large.
- ➤ What if partial pivoting is used?
- ightharpoonup Permutations introduce no errors. Equivalent to standard LU factorization on matrix PA.
- ightarrow $|\hat{L}|$ is small since $l_{ij} \leq 1$. Therefore, only U is "uncertain"
- ightharpoonup In practice partial pivoting is "stable" i.e., it is highly unlikely to have a very large U.

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors \hat{L} and \hat{U} satisfy

$$\hat{L}\hat{U} = A + H$$

with

$$|H| \leq 3(n-1) \, imes \, \underline{\mathrm{u}} \, \left(|A| + |\hat{L}| \, |\hat{U}|
ight) + O(\underline{\mathrm{u}}^{\, 2})$$

ightharpoonup Solution \hat{x} computed via $\hat{L}\hat{y}=b$ and $\hat{U}\hat{x}=\hat{y}$ is s. t.

$$(A+E)\hat{x}=b \quad \mathsf{with}|E| \leq n \underline{\mathrm{u}} \, \left(3|A| \, + 5 \, |\hat{L}| \, |\hat{U}|
ight) + O(\underline{\mathrm{u}}^{\, 2})$$

Supplemental notes: Floating Point Arithmetic

In most computing systems, real numbers are represented in two parts: A mantissa and an exponent. If the representation is in the base β then:

$$x=\pm (.d_1d_2\cdots d_m)_{eta}eta^e$$

GvL 2.7 - FloatSupp

- $ightharpoonup .d_1 d_2 \cdots d_m$ is a fraction in the base-eta representation
- ightharpoonup e is an integer can be negative, positive or zero.
- ➤ Generally the form is normalized in that $d_1 \neq 0$.

4-27 ________ GvL 2.7 – Float 4-28 ______

Example: In base 10 (for illustration)

1. 1000.12345 can be written as

 $0.100012345_{10} \times 10^4$

2. 0.000812345 can be written as

 $0.812345_{10} \times 10^{-3}$

> Problem with floating point arithmetic: we have to live with limited precision.

Example: Assume that we have only 5 digits of accuray in the mantissa and 2 digits for the exponent (excluding sign).

$$oxed{.d_1 d_2 d_3 d_4 d_5 e_1 e_2}$$

GvL 2.7 - FloatSuppl

Third task:

round result. Result has 6 digits - can use only 5 so we can

- ➤ Chop result: .1 0 0 1 2 ;
- ➤ Round result: .1 0 0 1 3 ;

Fourth task:

Normalize result if needed (not needed here)

result with rounding: 10011304;

№10 Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:

$$1000.2 = \boxed{.1 \ | \ 0 \ | \ 0 \ | \ 2 \ | \ 0 \ | \ 4} \ ; \qquad 1.07 = \boxed{.1 \ | \ 0 \ | \ 7 \ | \ 0 \ | \ 0 \ | \ 1}$$

First task: align decimal points. The one with smallest exponent will be (internally) rewritten so its exponent matches the largest one:

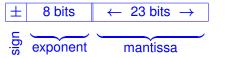
$$1.07 = 0.000107 \times 10^4$$

Second task: add mantissas:

GvL 2.7 - FloatSupp

The IEEE standard

32 bit (Single precision):



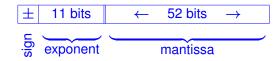
- \blacktriangleright Number is scaled so it is in the form $1.d_1d_2...d_{23}\times 2^e$ but leading one is not represented.
- \triangleright e is between -126 and 127.
- ➤ [Here is why: Internally, exponent *e* is represented in "biased" form: what is stored is actually c = e + 127 – so the value c of exponent field is between 1 and 254. The values c=0 and c=255 are for special cases (0 and ∞)]

GvL 2.7 - FloatSuppl

4-32

GvL 2.7 - FloatSuppl

64 bit (Double precision):



- \blacktriangleright Bias of 1023 so if e is the actual exponent the content of the exponent field is c=e+1023
- ➤ Largest exponent: 1023; Smallest = -1022.
- ightharpoonup c=0 and c=2047 (all ones) are again for 0 and ∞
- ➤ Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one hidden).
- ➤ In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

-33 _____ GvL 2.7 - FloatSuppl

Special Values

- Exponent field = 00000000000 (smallest possible value) No hidden bit. All bits == 0 means exactly zero.
- Allow for unnormalized numbers, leading to gradual underflow.
- Exponent field = 11111111111 (largest possible value) Number represented is "Inf" "-Inf" or "NaN".

Take the number 1.0 and see what will happen if you add $1/2, 1/4,, 2^{-i}$. Do not forget the hidden bit!

Hidden bit (Not represented)

Expon. ↓ ← 52 bits →

e 1 1 0 0 0 0 0 0 0 0 0 0 0 0

e 1 0 1 0 0 0 0 0 0 0 0 0 0

e 1 0 0 1 0 0 0 0 0 0 0 0 0

......

e 1 0 0 0 0 0 0 0 0 0 0 0 0 0

e 1 0 0 0 0 0 0 0 0 0 0 0 0

(Note: The 'e' part has 12 bits and includes the sign)

➤ Conclusion

$$fl(1+2^{-52}) \neq 1$$
 but: $fl(1+2^{-53}) == 1 \; !!$

4 ______ GvL 2.7 – FloatSuppl

Recent trend: GPUs

- ➤ Graphics Processor Units: Very fast boards attached to CPUs for heavy-duty computing
- \triangleright e.g., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops = 10^{12} operations per second) for certain types of computations.
- ➤ Single precision much faster than double ...
- \blacktriangleright ... and there is also "half-precision" which is ≈ 16 times faster than standard 64bit arithmetic
- ➤ Used primarily for Deep-learning

4-35 ______ GvL 2.7 – FloatSupp

4-36

GvL 2.7 – FloatSupp