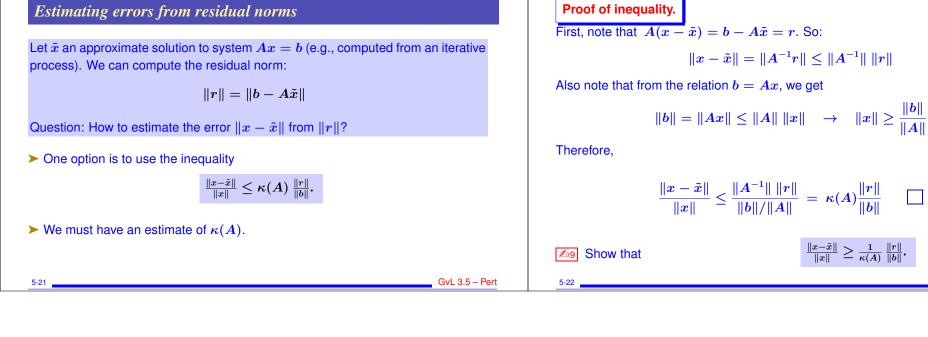
ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS Conditioning of linear systems. Estimating errors for solutions of linear systems (Normwise) Backward error analysis Estimating condition numbers	 Perturbation analysis for linear systems (Ax = b) Question addressed by perturbation analysis: determine the variation of the solution x when the data, namely A and b, undergoes small variations. Problem is III-conditioned if small variations in data cause very large variation in the solution. Setting: > We perturb A into A + E and b into b + e_b. Can we bound the resulting change (perturbation) to the solution? Preparation: We begin with a lemma for a simple case
Rigorous norm-based error boundsLEMMA 1:If $ E < 1$ then $I - E$ is nonsingular and $ (I - E)^{-1} \le \frac{1}{1 - E }$	$\frac{5\cdot 2}{d} (I-E)^{-1} = \lim_{k\to\infty} \sum_{i=0}^{k} E^{i}.$ We write this as $(I-E)^{-1} = \sum_{i=0}^{\infty} E^{i}$ e) Finally:
Proof is based on following 5 steps a) Show: If $ E < 1$ then $I - E$ is nonsingular b) Show: $(I - E)(I + E + E^2 + \dots + E^k) = I - E^{k+1}$. c) From which we get: $(I - E)^{-1} = \sum_{i=0}^{k} E^i + (I - E)^{-1}E^{k+1} \rightarrow$	$\begin{split} \ (I-E)^{-1}\ &= \left\ \lim_{k\to\infty}\sum_{i=0}^{k}E^{i}\right\ = \lim_{k\to\infty}\left\ \sum_{i=0}^{k}E^{i}\right\ \\ &\leq \lim_{k\to\infty}\sum_{i=0}^{k}\left\ E^{i}\right\ \leq \lim_{k\to\infty}\sum_{i=0}^{k}\ E\ ^{i} \\ &\leq \frac{1}{1-\ E\ } \end{split}$
$(\mathbf{I} \mathbf{D}) = \sum_{i=0}^{n} \mathbf{D} + (\mathbf{I} \mathbf{D}) \mathbf{D} \mathbf{v}$ $\mathbf{GvL 3.5 - Pert}$	5-4 GvL 3.5 – Pert

> Can generalize result: **Proof:** From $(A + E)y = b + e_b$ and Ax = b we get $(A+E)(u-x) = e_b - Ex$. Hence: **LEMMA 2:** If A is nonsingular and $||A^{-1}|| ||E|| < 1$ then A + E is non-singular $y - x = (A + E)^{-1}(e_b - Ex)$ and $\|(A+E)^{-1}\| \leq \frac{\|A^{-1}\|}{1-\|A^{-1}\| \|\|E\|}$ Taking norms $\rightarrow ||y - x|| \leq ||(A + E)^{-1}|| [||e_b|| + ||E|| ||x||]$ \blacktriangleright Dividing by ||x|| and using result of lemma > Proof is based on relation $A + E = A(I + A^{-1}E)$ and use of previous lemma. $rac{\|y-x\|}{\|x\|} \leq \|(A+E)^{-1}\| \, [\|e_b\|/\|x\| + \|E\|]$ Now we can prove the main theorem: $\leq rac{\|A^{-1}\|}{1-\|A^{-1}\|\|E\|}[\|e_b\|/\|x\|+\|E\|]$ $\leq \frac{\|A^{-1}\|\|A\|}{1 - \|A^{-1}\|\|E\|} \left[\frac{\|e_b\|}{\|A\|\|x\|} + \frac{\|E\|}{\|A\|} \right]$ **THEOREM 1**: Assume that $(A + E)y = b + e_b$ and Ax = b and that $||A^{-1}|| ||E|| < 1$. Then A + E is nonsingular and Result follows by using inequality $||A|| ||x|| > ||b|| \dots$ **OFD** $\frac{\|x-y\|}{\|x\|} \le \frac{\|A^{-1}\| \|A\|}{1-\|A^{-1}\| \|E\|} \left(\frac{\|E\|}{\|A\|} + \frac{\|e_b\|}{\|b\|}\right)$ GvL 3.5 - Pert GvL 3.5 - Pert 5-5 5-6 The quantity $|\kappa(A) = ||A|| ||A^{-1}|||$ is called the condition number of the **Example:** Consider, for a large α , the $n \times n$ matrix linear system with respect to the norm $\|.\|$. When using the *p*-norms we $A = I + \alpha e_1 e_n^T$ write: $\kappa_n(A) = \|A\|_n \|A^{-1}\|_n$ ► Inverse of A is : $A^{-1} = I - \alpha e_1 e_n^T$ ► For the ∞-norm we have $||A||_{\infty} = ||A^{-1}||_{\infty} = 1 + |\alpha|$ > Note: $\kappa_2(A) = \sigma_{max}(A) / \sigma_{min}(A)$ = ratio of largest to smallest singular values $\kappa_{\infty}(A) = (1 + |\alpha|)^2.$ so that of A. Allows to define $\kappa_2(A)$ when A is not square. > Can give a very large condition number for a large α – but all the eigenvalues of Determinant *is not* a good indication of sensitivity A are equal to one. Small eigenvalues *do not* always give a good indication of poor conditioning. GvL 3.5 - Pert 5-7 GvL 3.5 - Pert 5-8

If the second state $\kappa(I) = 1$; Show that $\kappa(A) \ge 1$; Show that $\kappa(A) = \kappa(A^{-1})$ Show that for $\alpha \neq 0$, we have $\kappa(\alpha A) = \kappa(A)$	Simplification when $e_b = 0$:Simplification when $E = 0$: $\frac{\ x - y\ }{\ x\ } \le \frac{\ A^{-1}\ \ E\ }{1 - \ A^{-1}\ \ E\ }$ $\frac{\ x - y\ }{\ x\ } \le \ A^{-1}\ \ A\ \frac{\ e_b\ }{\ b\ }$ > Slightly less general form: Assume that $\ E\ /\ A\ \le \delta$ and $\ e_b\ /\ b\ \le \delta$ and $\delta\kappa(A) < 1$ then $\frac{\ x - y\ }{\ x\ } \le \frac{2\delta\kappa(A)}{1 - \delta\kappa(A)}$ \pounds Show the above result
$\begin{array}{l} \underbrace{ \text{GvL 3.5-Pert}} \\ \hline \textbf{Another common form:} \\ \hline \textbf{THEOREM 2: Let } (A + \Delta A)y = b + \Delta b \text{ and } Ax = b \text{ where } \ \Delta A\ \leq \epsilon \ E\ , \\ \ \Delta b\ \leq \epsilon \ e_b\ , \text{ and assume that } \epsilon \ A^{-1}\ \ E\ < 1. \text{ Then} \\ \\ \frac{\ x - y\ }{\ x\ } \leq \frac{\epsilon \ A^{-1}\ \ A\ }{1 - \epsilon \ A^{-1}\ \ E\ } \left(\frac{\ e_b\ }{\ b\ } + \frac{\ E\ }{\ A\ }\right) \end{array}$	 <u>6+10</u> GvL 3.5 – Pert Normwise backward error We solve Ax = b and find an approximate solution y Question: Find smallest perturbation to apply to A, b so that *exact* solution of perturbed system is y
Results to be seen later are of this type. 5-11	<u>5-12</u> <u>GvL 3.5 – Pert</u>

Normwise backward error in just A or b		Normwise backward error in both A & b
Suppose we model entire perturbation in RHS <i>b</i> . > Let $r = b - Ay$ be the residual. Then <i>y</i> satisfies $Ay = b + \Delta b$ with $\Delta b = -r$ exactly. > The relative perturbation to the RHS is $\frac{\ r\ }{\ b\ }$. Suppose we model entire perturbation in matrix <i>A</i> . > Then <i>y</i> satisfies $\left(A + \frac{ry^T}{y^Ty}\right)y = b$ > The relative perturbation to the matrix is $\left\ \frac{ry^T}{y^Ty}\right\ _2 / \ A\ _2 = \frac{\ r\ _2}{\ A\ \ y\ _2}$		For a given y and given perturbation directions E, e_b , we define the Normwise backward error: $\begin{split} \eta_{E,e_b}(y) &= \min\{\epsilon \mid (A + \Delta A)y = b + \Delta b; \\ \text{where } \Delta A, \Delta b \text{ satisfy: } \ \Delta A\ &\leq \epsilon \ E\ ; \\ \text{ and } \ \Delta b\ &\leq \epsilon \ e_b\ \end{split}$ In other words $\eta_{E,e_b}(y)$ is the smallest ϵ for which $(1) \begin{cases} (A + \Delta A)y = b + \Delta b; \\ \ \Delta A\ &\leq \epsilon \ E\ ; \\ \ \Delta b\ &\leq \epsilon \ e_b\ \end{cases}$
 5-13 y is given (a computed solution). E and e_b to be selected (most like of perturbation for A and b'). Typical choice: E = A, e_b = b ∞6 Explain why this is not unreasonable Let r = b - Ay. Then we have: THEOREM 3: η_{E,eb}(y) = r E y + e_b Normwise backward error is for case E = A, e_b = b: η_{A,b}(y) = r A y + b 	GvL 3.5 – Pert	5:14 <u>Gvt 3.5 - Pert</u> Show how this can be used in practice as a means to stop some iterative method which computes a sequence of approximate solutions to $Ax = b$. Solutions a consider the 6×6 Vandermonde system $Ax = b$ where $a_{ij} = j^{2(i-1)}$, $b = A * [1, 1, \dots, 1]^T$. We perturb A by E , with $ E \le 10^{-10} A $ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.
5-15	GvL 3.5 – Pert	5-16 GvL 3.5 – Pert

Estimating condition numbers.	\succ Condition number worse than $\ A\ / au$.
 Often we just want to get a lower bound for condition number [it is 'worse than'] We want to estimate A A⁻¹ . 	Typical choice for v : choose $[\cdots \pm 1 \cdots]$ with signs chosen on the fly during back- substitution to maximize the next entry in the solution, based on the upper triangular factor from Gaussian Elimination.
 The norm A is usually easy to compute but A⁻¹ is not. We want: Avoid the expense of computing A⁻¹ explicitly. <i>Idea:</i> Select a vector v so that v = 1 but Av = τ is small. Then: A⁻¹ ≥ 1/τ (show why) and: $\kappa(A) \ge \frac{ A }{\tau}$ More generally: $A^{-1} \ge \frac{ v }{ Av }$ and so: $\kappa(A) \ge \frac{ A v }{ Av }$ 	Similar techniques used to estimate condition numbers of large matrices in matlab.
5-17 GvL 3.5 – Pert	5-18 GvL 3.5 – Pert
Condition numbers and near-singularity> $1/\kappa \approx$ relative distance to nearest singular matrix.Let A, B be two $n \times n$ matrices with A nonsingular and B singular. Then $\frac{1}{\kappa(A)} \leq \frac{\ A - B\ }{\ A\ }$ Proof: B singular $\rightarrow \exists x \neq 0$ such that $Bx = 0$.	Example: let $A = \begin{pmatrix} 1 & 1 \\ 1 & 0.99 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ Then $\frac{1}{\kappa_1(A)} \leq \frac{0.01}{2} > \kappa_1(A) \geq \frac{2}{0.01} = 200.$ > It can be shown that (Kahan) $\frac{1}{\kappa(A)} = \min_{B} \left\{ \frac{\ A - B\ }{\ A\ } \mid \det(B) = 0 \right\}$
$\begin{split} \ x\ &= \ A^{-1}Ax\ \le \ A^{-1}\ \ Ax\ = \ A^{-1}\ \ (A-B)x\ \\ &\le \ A^{-1}\ \ A-B\ \ x\ \\ \end{split}$ Divide both sides by $\ x\ \times \kappa(A) = \ x\ \ A\ \ A^{-1}\ \succ$ result. QED.	Cul 2.5. Port
5-19 GvL 3.5 – Pert	5-20 GvL 3.5 – Pert



GvL 3.5 - Pert