Least-Squares Systems and the QR Factorization

- Orthogonality
- Least-squares systems.
- The Gram-Schmidt and Modified Gram-Schmidt processes.
- The Householder QR and the Givens QR.

Orthogonality

- 1. Two vectors u and v are orthogonal if (u, v) = 0.
- 2. A system of vectors $\{v_1, \ldots, v_n\}$ is orthogonal if $(v_i, v_j) = 0$ for $i \neq j$; and orthonormal if $(v_i, v_j) = \delta_{ij}$
- 3. A matrix is orthogonal if its columns are orthonormal
- ► Notation: $V = [v_1, \ldots, v_n] ==$ matrix with column-vectors v_1, \ldots, v_n .
- > Orthogonality is essential in understanding and solving least-squares problems.

Least-Squares systems

Siven: an $m \times n$ matrix n < m. Problem: find x which minimizes:

$$\|b-Ax\|_2$$

Good illustration: Data fitting.

<u>Typical problem of data fitting</u>: We seek an unknwon function as a linear combination ϕ of n known functions ϕ_i (e.g. polynomials, trig. functions). Experimental data (not accurate) provides measures β_1, \ldots, β_m of this unknown function at points t_1, \ldots, t_m . Problem: find the 'best' possible approximation ϕ to this data.

$$\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t)$$
 , s.t. $\phi(t_j) pprox eta_j, j = 1, \dots, m$

Question: Close in what sense?

 \blacktriangleright Least-squares approximation: Find ϕ such that

$$\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t), \; \& \; \sum_{j=1}^m |\phi(t_j) - eta_j|^2$$
 = Min

▶ In linear algebra terms: find 'best' approximation to a vector b from linear combinations of vectors f_i , i = 1, ..., n, where

$$b = egin{pmatrix} eta_1\ eta_2\ ec eta_m\end{pmatrix}, \quad f_i = egin{pmatrix} \phi_i(t_1)\ \phi_i(t_2)\ ec \phi_i(t_m)\end{pmatrix}$$

> We want to find $x = \{\xi_i\}_{i=1,...,n}$ such that

$$\left\|\sum_{i=1}^n \boldsymbol{\xi}_i \boldsymbol{f}_i - \boldsymbol{b}\right\|_2$$
 Minimum

Define

$$F = [f_1, f_2, \dots, f_n], \hspace{1em} x = egin{pmatrix} oldsymbol{\xi}_1 \ dots \ oldsymbol{\xi}_n \end{pmatrix}$$

> We want to find x to $\min ||b - Fx||_2$

This is a Least-squares linear system: F is $m \times n$, with $m \ge n$.

Formulate the least-squares system for the problem of finding the polynomial of degree 2 that approximates a function f which satisfies

$$f(-1)=-1; f(0)=1; f(1)=2; \; f(2)=0$$

Solution: $\phi_1(t) = 1; \quad \phi_2(t) = t; \quad \phi_3(t) = t^2;$

• Evaluate the ϕ_i 's at points $t_1 = -1; t_2 = 0; t_3 = 1; t_4 = 2$:

$$f_1 = egin{pmatrix} 1 \ 1 \ 1 \ 1 \end{pmatrix} \quad f_2 = egin{pmatrix} -1 \ 0 \ 1 \ 2 \end{pmatrix} \quad f_3 = egin{pmatrix} 1 \ 0 \ 1 \ 4 \end{pmatrix} \quad o$$

> So the coefficients ξ_1, ξ_2, ξ_3 of the polynomial $\xi_1 + \xi_2 t + \xi_3 t^2$ are the solution of the least-squares problem $\min ||b - Fx||$ where:

$$F=egin{pmatrix} 1&-1&1\ 1&0&0\ 1&1&1\ 1&2&4 \end{pmatrix} \quad b=egin{pmatrix} -1\ 1\ 2\ 0\ \end{pmatrix}$$

THEOREM. The vector x_* minimizes $\psi(x) = \|b - Fx\|_2^2$ if and only if it is the solution of the normal equations:

$$F^T F x = F^T b$$

Proof: Expand out the formula for $\psi(x_* + \delta x)$:

$$egin{aligned} \psi(x_*+\delta x) &= ((b-Fx_*)-F\delta x)^T((b-Fx_*)-F\delta x) \ &= \psi(x_*)-2(F\delta x)^T(b-Fx_*)+(F\delta x)^T(F\delta x) \ &= \psi(x_*)-2(\delta x)^T\left[\!\!\!\left[F^T(b-Fx_*)
ight]\!\!\!+\!(F\delta x)^T(F\delta x) \ &= \psi(x_*)-2(\delta x)^T\left[\!\!\!\left[F^T(b-Fx_*)
ight]\!\!\!+\!(F\delta x)^T(F\delta x) \ &= \delta x^T(F\delta x)^T(F\delta x) \ &= \delta x^T(F\delta x)^T(F\delta x)^T(F\delta x) \ &= \delta x^T(F\delta x)^T(F\delta x)^T(F\delta x)^T(F\delta x) \ &= \delta x^T(F\delta x)^T(F\delta x)^T(F\delta$$

Can see that $\psi(x_* + \delta x) \ge \psi(x_*)$ for any δx , iff the boxed quantity [the gradient vector] is zero. Q.E.D.

Illustration of theorem: x^* is the best approximation to the vector b from the subspace span $\{F\}$ if and only if $b - Fx^*$ is \bot to the whole subspace span $\{F\}$. This in turn is equivalent to $F^T(b - Fx^*) = 0 >$ Normal equations.

Example:Points:
$$t_1 = -1$$
 $t_2 = -1/2$ $t_3 = 0$ $t_4 = 1/2$ $t_5 = 1$ Values: $\beta_1 = 0.1$ $\beta_2 = 0.3$ $\beta_3 = 0.3$ $\beta_4 = 0.2$ $\beta_5 = 0.0$

GvL 5, 5.3 – QR

1) Approximations by polynomials of degree one:

$$\blacktriangleright \phi_1(t)=1, \phi_2(t)=t.$$

$$F=egin{pmatrix} 1.0&-1.0\ 1.0&-0.5\ 1.0&0\ 1.0&0.5\ 1.0&1.0\ \end{pmatrix}$$

• Best approximation is
$$\phi(t) = 0.18 - 0.06t$$
.

$$F^TF=egin{pmatrix} 5.0&0\0&2.5\end{pmatrix}\ F^Tb=egin{pmatrix} 0.9\-0.15\end{pmatrix}$$

GvL 5, 5.3 – QR

2) Approximation by polynomials of degree 2:

 $\blacktriangleright \phi_1(t) = 1, \phi_2(t) = t, \phi_3(t) = t^2.$

Best polynomial found:

$$0.30857..-0.06 \times t - 0.25715... \times t^2$$

GvL 5, 5.3 – QR

Problem with Normal Equations

 \blacktriangleright Condition number is high: if A is square and non-singular, then

$$egin{aligned} \kappa_2(A) &= \|A\|_2 \cdot \|A^{-1}\|_2 = \sigma_{ ext{max}} / \sigma_{ ext{min}} \ \kappa_2(A^T A) &= \|A^T A\|_2 \cdot \|(A^T A)^{-1}\|_2 = (\sigma_{ ext{max}} / \sigma_{ ext{min}})^2 \end{aligned}$$

Example: Let
$$A = \begin{pmatrix} 1 & 1 & -\epsilon \\ \epsilon & 0 & 1 \\ 0 & \epsilon & 1 \end{pmatrix}$$
.

▶ Then $\kappa(A) \approx \sqrt{2}/\epsilon$, but $\kappa(A^T A) \approx 2\epsilon^{-2}$.

►
$$fl(A^TA) = fl\begin{pmatrix} 1+\epsilon^2 & 1 & 0\\ 1 & 1+\epsilon^2 & 0\\ 0 & 0 & 2+\epsilon^2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0\\ 1 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}$$
 is singular to working precision (if $\epsilon^2 < eps$).

Finding an orthonormal basis of a subspace

> Goal: Find vector in $\operatorname{span}(X)$ closest to b.

> Much easier with an orthonormal basis for span(X).

<u>Problem</u>: Given $X = [x_1, \ldots, x_n]$, compute $Q = [q_1, \ldots, q_n]$ which has orthonormal columns and s.t. span(Q) = span(X)

 \blacktriangleright Note: each column of X must be a linear combination of certain columns of Q.

> We will find Q so that x_j (j column of X) is a linear combination of the first j columns of Q.

ALGORITHM : 1 . Classical Gram-Schmidt

1. For
$$j = 1, ..., n$$
 Do:
2. Set $\hat{q} := x_j$
3. Compute $r_{ij} := (\hat{q}, q_i)$, for $i = 1, ..., j - 1$
4. For $i = 1, ..., j - 1$ Do :
5. Compute $\hat{q} := \hat{q} - r_{ij}q_i$
6. EndDo
7. Compute $r_{jj} := ||\hat{q}||_2$,
8. If $r_{jj} = 0$ then Stop, else $q_j := \hat{q}/r_{jj}$

9. EndDo

> All *n* steps can be completed iff x_1, x_2, \ldots, x_n are linearly independent.

Prove this result

Lines 5 and 7-8 show that

$$x_j=r_{1j}q_1+r_{2j}q_2+\ldots+r_{jj}q_j$$

If $X = [x_1, x_2, \ldots, x_n]$, $Q = [q_1, q_2, \ldots, q_n]$, and if R is the $n \times n$ upper triangular matrix

$$R = \{r_{ij}\}_{i,j=1,...,n}$$

then the above relation can be written as

$$X = QR$$

 \triangleright **R** is upper triangular, **Q** is orthogonal. This is called the **QR** factorization of **X**.

Multiply What is the cost of the factorization when $X \in \mathbb{R}^{m \times n}$?

Another decomposition:

A matrix X, with linearly independent columns, is the product of an orthogonal matrix Q and a upper triangular matrix R.

Better algorithm: Modified Gram-Schmidt.

ALGORITHM : 2 Modified Gram-Schmidt

1. For
$$j = 1, ..., n$$
 Do:

2. Define
$$\hat{q} := x_j$$

3. For
$$i = 1, ..., j - 1$$
, Do:

4.
$$r_{ij} := (\hat{q}, q_i)$$

5.
$$\hat{q} := \hat{q} - r_{ij}q_i$$

7. Compute
$$r_{jj} := \|\hat{q}\|_2$$
,

8. If
$$r_{jj}=0$$
 then Stop, else $q_j:=\hat{q}/r_{jj}$

9. EndDo

Only difference: inner product uses the accumulated subsum instead of original \hat{q}

The operations in lines 4 and 5 can be written as

$$\hat{q} := ORTH(\hat{q}, q_i)$$

where ORTH(x,q) denotes the operation of orthogonalizing a vector x against a unit vector q.

Modified Gram-Schmidt algorithm is much more stable than classical Gram-Schmidt in general.

Suppose MGS is applied to A yielding computed matrices \hat{Q} and \hat{R} . Then there are constants c_i (depending on (m, n)) such that

 $A+E_1=\hat{Q}\hat{R} \hspace{0.5cm} \|E_1\|_2 \leq c_1 \ \underline{\mathrm{u}} \hspace{0.5cm} \|A\|_2$

 $\|\hat{Q}^T\hat{Q}-I\|_2\leq c_2\, \underline{\mathrm{u}}\,\,\kappa_2(A)+O((\underline{\mathrm{u}}\,\kappa_2(A))^2)$

for a certain perturbation matrix E_1 , and there exists an orthonormal matrix Q such that

$$A+E_2=Q\hat{R} ~~ \|E_2(:,j)\|_2 \leq c_3 {ar u} \, \|A(:,j)\|_2 ~~$$

for a certain perturbation matrix E_2 .

> An equivalent version:

ALGORITHM : 3 Modified Gram-Schmidt - 2 -

- 0. Set $\hat{Q} := X$
- 1. For i = 1, ..., n Do:
- 2. Compute $r_{ii} := \|\hat{q}_i\|_2$,
- 3. If $r_{ii} = 0$ then Stop, else $q_i := \hat{q}_i / r_{ii}$
- 4. For $j = i+1,\ldots,n$, Do:
- 5. $r_{ij} := (\hat{q}_j, q_i)$
- $6. \qquad \hat{q}_j := \hat{q}_j r_{ij}q_i$
- 7. EndDo
- 8. EndDo

> Does exactly the same computation as previous algorithm, but in a different order.

Example:

Orthonormalize the system of vectors:

 $X = [x_1, x_2, x_3] \; = \; egin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & -1 \ 1 & 0 & 4 \end{pmatrix}$

Answer:

$$\begin{split} \hat{q}_3 &= x_3 - \underbrace{(x_3, q_1)}_{=2} q_1 = \begin{pmatrix} 1\\0\\-1\\4 \end{pmatrix} - 2 \times \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\-1\\-2\\3 \end{pmatrix} \\ \hat{q}_3 &= \hat{q}_3 - \underbrace{(\hat{q}_3, q_2)}_{=-1} q_2 = \begin{pmatrix} 0\\-1\\-2\\3 \end{pmatrix} - \frac{-1}{2} \begin{pmatrix} 1\\1\\-1\\-1\\-1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1\\-1\\-5\\5 \end{pmatrix} \\ \|\hat{q}_3\|_2 &= \sqrt{13} \to q_3 = \frac{\hat{q}_3}{\|\hat{q}_3\|_2} = \frac{1}{2\sqrt{13}} \begin{pmatrix} 1\\-1\\-5\\5 \end{pmatrix} \end{split}$$

GvL 5, 5.3 – QR

7-22

For this example: what is Q? what is R? Compute $Q^T Q$.

> Result $Q^T Q$ is the identity matrix.

Recall: For any orthogonal matrix Q, we have

$$Q^T Q = I$$

(In complex case: $Q^HQ = I$). Consequence: For an $n \times n$ orthogonal matrix $Q^{-1} = Q^T$. (Q is orthogonal/unitary)

Use of the QR factorization

Problem: $Ax \approx b$ in least-squares sense

 $\blacktriangleright A$ is an $m \times n$ (full-rank) matrix. Let:

A = QR

the QR factorization of A and consider the normal equations:

 $A^TAx = A^Tb \rightarrow R^TQ^TQRx = R^TQ^Tb \rightarrow$ $R^TRx = R^TQ^Tb \rightarrow Rx = Q^Tb$ $(R^T ext{ is an } n imes n ext{ nonsingular matrix}). ext{ Therefore,}$

$$x = R^{-1}Q^T b$$

Another derivation:

▶ Recall: span(Q) = span(A)

 \blacktriangleright So $||b - Ax||_2$ is minimum when $b - Ax \perp \operatorname{span}\{Q\}$

 \blacktriangleright Therefore solution x must satisfy $Q^T(b-Ax)=0
ightarrow$

$$Q^T(b - QRx) = 0
ightarrow Rx = Q^T b$$

$$x = R^{-1}Q^T b$$

\blacktriangleright Also observe that for any vector w

$$w = QQ^Tw + (I - QQ^T)w$$

and that
$$QQ^Tw$$
 \perp $(I-QQ^T)w$ \rightarrow

> Pythagoras theorem \rightarrow

$$\|w\|_2^2 = \|QQ^Tw\|_2^2 + \|(I-QQ^T)w\|_2^2$$

$$\begin{split} \|b - Ax\|^2 &= \|b - QRx\|^2 \\ &= \|(I - QQ^T)b + Q(Q^Tb - Rx)\|^2 \\ &= \|(I - QQ^T)b\|^2 + \|Q(Q^Tb - Rx)\|^2 \\ &= \|(I - QQ^T)b\|^2 + \|Q^Tb - Rx\|^2 \end{split}$$

Min is reached when 2nd term of r.h.s. is zero.

GvL 5, 5.3 – QR

7-26

Method:

- Compute the QR factorization of A, A = QR.
- Compute the right-hand side $f = Q^T b$
- Solve the upper triangular system Rx = f.
- x is the least-squares solution

> As a rule it is not a good idea to form $A^T A$ and solve the normal equations. Methods using the QR factorization are better.

Total cost?? (depends on the algorithm used to get the QR decomposition).

Using matlab find the parabola that fits the data in previous data fitting example (p. 7-9) in L.S. sense [verify that the result found is correct.]

Application: another method for solving linear systems.

$$Ax = b$$

A is an $n \times n$ nonsingular matrix. Compute its QR factorization.

 \blacktriangleright Multiply both sides by $Q^T
ightarrow Q^T QRx = Q^Tb
ightarrow$

$$Rx = Q^T b$$

Method:

- > Compute the QR factorization of A, A = QR.
- > Solve the upper triangular system $Rx = Q^T b$.

▲7 Cost??