
Least-Squares Systems and the QR Factorization

• Orthogonality

• Least-squares systems.

• The Gram-Schmidt and Modified Gram-Schmidt processes.

• The Householder QR and the Givens QR.
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Orthogonality
1. Two vectors u and v are orthogonal if (u, v) = 0.

2. A system of vectors {v1, . . . , vn} is orthogonal if (vi, vj) = 0 for i 6= j; and
orthonormal if (vi, vj) = δij

3. A matrix is orthogonal if its columns are orthonormal

ä Notation: V = [v1, . . . , vn] == matrix with column-vectors v1, . . . , vn.

ä Orthogonality is essential in understanding and solving least-squares problems.
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Least-Squares systems

ä Given: an m× n matrix n < m. Problem: find x which minimizes:

‖b−Ax‖2

ä Good illustration: Data fitting.

Typical problem of data fitting: We seek an unknwon function as a linear combina-
tion φ of n known functions φi (e.g. polynomials, trig. functions). Experimental
data (not accurate) provides measures β1, . . . , βm of this unknown function at
points t1, . . . , tm. Problem: find the ‘best’ possible approximation φ to this data.

φ(t) =
∑n
i=1 ξiφi(t) , s.t. φ(tj) ≈ βj, j = 1, . . . ,m
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ä Question: Close in what sense?

ä Least-squares approximation: Find φ such that

φ(t) =
∑n
i=1 ξiφi(t), &

∑m
j=1 |φ(tj)− βj|2 = Min

ä In linear algebra terms: find ‘best’ approximation to a vector b from linear combi-
nations of vectors fi, i = 1, . . . , n, where

b =


β1

β2
...
βm

 , fi =


φi(t1)

φi(t2)
...

φi(tm)
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ä We want to find x = {ξi}i=1,...,n such that∥∥∥∥∥
n∑
i=1

ξifi − b
∥∥∥∥∥
2

Minimum

Define

F = [f1, f2, . . . , fn], x =

ξ1...
ξn


ä We want to find x to minimize ‖b− Fx‖2

ä This is a Least-squares linear system: F is m× n, with m ≥ n.

-1 Formulate the least-squares system for the problem of finding the polynomial of
degree 2 that approximates a function f which satisfies
f(−1) = −1; f(0) = 1; f(1) = 2; f(2) = 0
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Solution: φ1(t) = 1; φ2(t) = t; φ3(t) = t2;

• Evaluate the φi’s at points t1 = −1; t2 = 0; t3 = 1; t4 = 2:

f1 =


1

1

1

1

 f2 =


−1
0

1

2

 f3 =


1

0

1

4

 →

ä So the coefficients ξ1, ξ2, ξ3 of the polynomial ξ1 + ξ2t+ ξ3t
2 are the solution of

the least-squares problem min ‖b− Fx‖ where:

F =


1 −1 1

1 0 0

1 1 1

1 2 4

 b =


−1
1

2

0



7-6 GvL 5, 5.3 – QR

7-6



THEOREM. The vector x∗ mininizes ψ(x) = ‖b − Fx‖22 if and only if it
is the solution of the normal equations:

F TFx = F Tb

Proof: Expand out the formula for ψ(x∗ + δx):

ψ(x∗ + δx) = ((b− Fx∗)− Fδx)T ((b− Fx∗)− Fδx)
= ψ(x∗)− 2(Fδx)T (b− Fx∗) + (Fδx)T (Fδx)

= ψ(x∗)− 2(δx)T [F T (b− Fx∗)]︸ ︷︷ ︸
−∇xψ

+(Fδx)T (Fδx)︸ ︷︷ ︸
always ≥0

Can see that ψ(x∗ + δx) ≥ ψ(x∗) for any δx, iff the boxed quantity [the gradient
vector] is zero. Q.E.D.
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b

b − F x *

F x *0
}F{

Illustration of theorem: x∗ is the best approximation to the vector b from the sub-
space span{F} if and only if b− Fx∗ is ⊥ to the whole subspace span{F}. This
in turn is equivalent to F T (b− Fx∗) = 0 ä Normal equations.

7-8 GvL 5, 5.3 – QR

7-8



Example:
Points: t1 = −1 t2 = −1/2 t3 = 0 t4 = 1/2 t5 = 1

Values: β1 = 0.1 β2 = 0.3 β3 = 0.3 β4 = 0.2 β5 = 0.0
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1) Approximations by polynomials of degree one:

ä φ1(t) = 1, φ2(t) = t.

F =


1.0 −1.0
1.0 −0.5
1.0 0

1.0 0.5

1.0 1.0


F TF =

(
5.0 0

0 2.5

)

F Tb =

(
0.9

−0.15

)

ä Best approximation is
φ(t) = 0.18− 0.06t .
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2) Approximation by polynomials of degree 2:

ä φ1(t) = 1, φ2(t) = t, φ3(t) = t2.

ä Best polynomial found: 0.30857..− 0.06 × t − 0.25715... × t2
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Problem with Normal Equations

ä Condition number is high: if A is square and non-singular, then

κ2(A) = ‖A‖2 · ‖A−1‖2 = σmax/σmin

κ2(A
TA) = ‖ATA‖2 · ‖(ATA)−1‖2 = (σmax/σmin)

2

ä Example: Let A =

 1 1 −ε
ε 0 1
0 ε 1

.

ä Then κ(A) ≈
√
2/ε, but κ(ATA) ≈ 2ε−2.

ä fl(ATA) = fl

 1 + ε2 1 0
1 1 + ε2 0
0 0 2 + ε2

 =

 1 1 0
1 1 0
0 0 2

 is singular to working

precision (if ε2 < eps ).
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Finding an orthonormal basis of a subspace

ä Goal: Find vector in span(X) closest to b.

ä Much easier with an orthonormal basis for span(X).

Problem: Given X = [x1, . . . , xn], compute Q = [q1, . . . , qn] which has
orthonormal columns and s.t. span(Q) = span(X)

ä Note: each column of X must be a linear combination of certain columns of Q.

ä We will find Q so that xj (j column of X) is a linear combination of the first j
columns of Q.
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ALGORITHM : 1 Classical Gram-Schmidt
1. For j = 1, . . . , n Do:
2. Set q̂ := xj
3. Compute rij := (q̂, qi) , for i = 1, . . . , j − 1

4. For i = 1, . . . , j − 1 Do :
5. Compute q̂ := q̂ − rijqi
6. EndDo
7. Compute rjj := ‖q̂‖2 ,
8. If rjj = 0 then Stop, else qj := q̂/rjj
9. EndDo

ä All n steps can be completed iff x1, x2, . . . , xn are linearly independent.

-2 Prove this result
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ä Lines 5 and 7-8 show that

xj = r1jq1 + r2jq2 + . . .+ rjjqj

ä If X = [x1, x2, . . . , xn], Q = [q1, q2, . . . , qn], and if R is the n × n upper
triangular matrix

R = {rij}i,j=1,...,n

then the above relation can be written as

X = QR

ä R is upper triangular, Q is orthogonal. This is called the QR factorization of X.

-3 What is the cost of the factorization when X ∈ Rm×n?
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= Q

R

*
X

Q is orthogonal

(Q   Q = I)

Original 
matrix H

R is upper
triangular

      

Another decomposition:
A matrix X, with linearly independent columns, is the product of an orthogonal

matrix Q and a upper triangular matrix R.
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ä Better algorithm: Modified Gram-Schmidt.

ALGORITHM : 2 Modified Gram-Schmidt
1. For j = 1, . . . , n Do:
2. Define q̂ := xj
3. For i = 1, . . . , j − 1, Do:
4. rij := (q̂, qi)

5. q̂ := q̂ − rijqi
6. EndDo
7. Compute rjj := ‖q̂‖2,
8. If rjj = 0 then Stop, else qj := q̂/rjj
9. EndDo

Only difference: inner product uses the accumulated subsum instead of original q̂

7-17 GvL 5, 5.3 – QR

7-17



The operations in lines 4 and 5 can be written as

q̂ := ORTH(q̂, qi)

where ORTH(x, q) denotes the operation of orthogonalizing a vector x against a
unit vector q.

q

xz

 (x,q) 

Result of z = ORTH(x, q)
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ä Modified Gram-Schmidt algorithm is much more stable than classical Gram-Schmidt
in general.

Suppose MGS is applied to A yielding computed matrices Q̂ and R̂. Then there
are constants ci (depending on (m,n)) such that

A+ E1 = Q̂R̂ ‖E1‖2 ≤ c1 u ‖A‖2

‖Q̂T Q̂− I‖2 ≤ c2 u κ2(A) + O((uκ2(A))2)

for a certain perturbation matrix E1, and there exists an orthonormal matrix Q
such that

A+ E2 = QR̂ ‖E2(:, j)‖2 ≤ c3u ‖A(:, j)‖2
for a certain perturbation matrix E2.
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ä An equivalent version:

ALGORITHM : 3 Modified Gram-Schmidt - 2 -
0. Set Q̂ := X

1. For i = 1, . . . , n Do:
2. Compute rii := ‖q̂i‖2,
3. If rii = 0 then Stop, else qi := q̂i/rii
4. For j = i+ 1, . . . , n, Do:
5. rij := (q̂j, qi)

6. q̂j := q̂j − rijqi
7. EndDo
8. EndDo

ä Does exactly the same computation as previous algorithm, but in a different order.
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Example:
Orthonormalize the system of
vectors:

X = [x1, x2, x3] =


1 1 1

1 1 0

1 0 −1
1 0 4


Answer:

q1 =
1

2


1

1

1

1

 ; q̂2 = x2 − (x2, q1)︸ ︷︷ ︸
=1

q1 =


1

1

0

0

− 1×
1

2


1

1

1

1



q̂2 =
1

2


1

1

−1
−1

 ; q2 =
1

2


1

1

−1
−1
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q̂3 = x3 − (x3, q1)︸ ︷︷ ︸
=2

q1 =


1

0

−1
4

− 2×
1

2


1

1

1

1

 =


0

−1
−2
3



q̂3 = q̂3 − (q̂3, q2)︸ ︷︷ ︸
=−1

q2 =


0

−1
−2
3

− −12


1

1

−1
−1

 =
1

2


1

−1
−5
5



‖q̂3‖2 =
√
13→ q3 =

q̂3

‖q̂3‖2
=

1

2
√
13


1

−1
−5
5
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-4 For this example: what is Q? what is R? Compute QTQ.

ä Result QTQ is the identity matrix.

Recall: For any orthogonal matrix Q, we have

QTQ = I

(In complex case: QHQ = I).
Consequence: For an n × n orthogonal matrix Q−1 = QT . (Q is orthogonal/
unitary)
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Use of the QR factorization

Problem: Ax ≈ b in least-squares sense

ä A is an m× n (full-rank) matrix. Let: A = QR

the QR factorization of A and consider the normal equations:

ATAx = ATb → RTQTQRx = RTQTb →

RTRx = RTQTb→ Rx = QTb

(RT is an n× n nonsingular matrix). Therefore,

x = R−1QTb
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Another derivation:

ä Recall: span(Q) = span(A)

ä So ‖b−Ax‖2 is minimum when b−Ax ⊥ span{Q}

ä Therefore solution x must satisfy QT (b−Ax) = 0→

QT (b−QRx) = 0→ Rx = QTb

x = R−1QTb
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ä Also observe that for any vector w

w = QQTw + (I −QQT )w

and that QQTw ⊥ (I −QQT )w →
ä Pythagoras
theorem−→

‖w‖22 = ‖QQTw‖22 + ‖(I −QQT )w‖22

‖b−Ax‖2 = ‖b−QRx‖2

= ‖(I −QQT )b+Q(QTb−Rx)‖2

= ‖(I −QQT )b‖2 + ‖Q(QTb−Rx)‖2

= ‖(I −QQT )b‖2 + ‖QTb−Rx‖2

ä Min is reached when 2nd term of r.h.s. is zero.
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Method:
• Compute the QR factorization of A, A = QR.
• Compute the right-hand side f = QTb

• Solve the upper triangular system Rx = f .
• x is the least-squares solution

ä As a rule it is not a good idea to form ATA and solve the normal equations.
Methods using the QR factorization are better.

-5 Total cost?? (depends on the algorithm used to get the QR decomposition).

-6 Using matlab find the parabola that fits the data in previous data fitting example
(p. 7-9) in L.S. sense [verify that the result found is correct.]
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Application: another method for solving linear systems.

Ax = b

A is an n× n nonsingular matrix. Compute its QR factorization.

ä Multiply both sides by QT → QTQRx = QTb→

Rx = QTb

Method:

ä Compute the QR factorization of A, A = QR.

ä Solve the upper triangular system Rx = QTb.

-7 Cost??
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