THE URV & SINGULAR VALUE DECOMPOSITIONS

- Orthogonal subspaces
- Orthogonal projectors, Orthogonal decomposition
- The URV decomposition
- The Singular Value Decomposition
- Properties of the SVD. Relations to eigenvalue problems

Proof. (a), (b) are trivial

(c): Clearly $Ran(P) = \{x | x = QQ^Ty, y \in \mathbb{R}^r\} \subseteq \mathcal{X}$. Any $x \in \mathcal{X}$ is of the form $x=Qy,y\in\mathbb{R}^r$. Take $Px=QQ^T(Qy)=Qy=x$. Since x=Px, $x \in Ran(P)$. So $\mathcal{X} \subseteq Ran(P)$. In the end $\mathcal{X} = Ran(P)$.

(d): $x \in \mathcal{X}^{\perp} \leftrightarrow (x,y) = 0, \forall y \in \mathcal{X} \leftrightarrow (x,Qz) = 0, \forall z \in \mathbb{R}^r \leftrightarrow (Q^Tx,z) = 0$ $0, \forall z \in \mathbb{R}^r \leftrightarrow Q^T x = 0 \leftrightarrow QQ^T x = 0 \leftrightarrow P x = 0 \leftrightarrow x \in \text{Null}(P).$

(e): Need to show inclusion both ways.

- $x \in Null(P) \leftrightarrow Px = 0 \leftrightarrow (I P)x = x \rightarrow x \in Ran(I P)$
- $x \in Ran(I-P) \leftrightarrow \exists y \in \mathbb{R}^m | x = (I-P)y \rightarrow Px = P(I-P)y = 0 \rightarrow Px$ $x \in Null(P)$

Orthogonal projectors and subspaces

Notation: Given a supspace \mathcal{X} of \mathbb{R}^m define:

$$\mathcal{X}^{\perp} = \{y \ | y \perp x, \ orall \ x \ \in \mathcal{X} \}$$

 \blacktriangleright Let $Q=[q_1,\cdots,q_r]$ an orthonormal basis of $\mathcal X$

How would you obtain such a basis?

 \triangleright Then define orthogonal projector $P = QQ^T$

Properties

a)
$$P^2=P$$

(a)
$$P^2 = P$$
 (b) $(I - P)^2 = I - P$

(c)
$$Ran(P) = \mathcal{X}$$

(c)
$$Ran(P) = \mathcal{X}$$
 (d) $Null(P) = \mathcal{X}^{\perp}$

(e)
$$Ran(I-P) = Null(P) = \mathcal{X}^{\perp}$$

 \blacktriangleright Note that (b) means that I-P is also a projector

Result: Any $x \in \mathbb{R}^m$ can be written in a unique way as

$$x=x_1+x_2, \quad x_1 \, \in \, \mathcal{X}, \quad x_2 \, \in \, \mathcal{X}^{\perp}$$

- ightharpoonup Proof: Just set $x_1 = Px, \quad x_2 = (I-P)x$
- ➤ Note:

$$\mathcal{X}\cap\mathcal{X}^\perp=\{0\}$$

> Therefore:

$$\mathbb{R}^m = \; \mathcal{X} \; \oplus \; \mathcal{X}^\perp$$

➤ Called the Orthogonal Decomposition

GvL 2.4, 5.4-5 - SVD

Orthogonal decomposition

ightharpoonup In other words $\mathbb{R}^m=P\mathbb{R}^m\oplus (I-P)\mathbb{R}^m$ or:

 $\mathbb{R}^m = Ran(P) \oplus Ran(I-P)$ or:

 $\mathbb{R}^m = Ran(P) \oplus Null(P)$ or:

 $\mathbb{R}^m = Ran(P) \oplus Ran(P)^{\perp}$

- lacksquare Can complete basis $\{q_1,\cdots,q_r\}$ into orthonormal basis of $\mathbb{R}^m,\,q_{r+1},\cdots,q_m$
- $lacksquare \{q_{r+1},\cdots,q_m\}$ = basis of \mathcal{X}^\perp . ightarrow $egin{aligned} dim(\mathcal{X}^\perp) = m-r. \end{aligned}$

9-5 ______ GvL 2.4, 5.4-5 – SVD

 \triangleright Express the above with bases for \mathbb{R}^m :

$$[\underbrace{u_1,u_2,\cdots,u_r}_{Ran(A)},\underbrace{u_{r+1},u_{r+2},\cdots,u_m}_{ extbf{Null}(A^T)}]$$

and for \mathbb{R}^n $[\underbrace{v_1,v_2,\cdots,v_r}_{\pmb{Ran}(\pmb{A^T})},\underbrace{v_{r+1},v_{r+2},\cdots,v_n}_{Null(\pmb{A})}]$

ightharpoonup Observe $u_i^T A v_j = 0$ for i > r or j > r. Therefore

$$U^TAV = R = egin{pmatrix} C & 0 \ 0 & 0 \end{pmatrix}_{m imes n} \quad C \in \ \mathbb{R}^{r imes r} & \longrightarrow$$

 $A = URV^T$

➤ General class of URV decompositions

Four fundamental supspaces - URV decomposition

Let $A \in \mathbb{R}^{m \times n}$ and consider $\operatorname{Ran}(A)^{\perp}$

Property 1:
$$\operatorname{Ran}(A)^{\perp} = Null(A^T)$$

Proof: $x \in \operatorname{Ran}(A)^{\perp}$ iff (Ay, x) = 0 for all y; iff $(y, A^Tx) = 0$ for all y ...

Property 2:
$$\operatorname{Ran}(A^T) = Null(A)^{\perp}$$

ightharpoonup Take $\mathcal{X} = \operatorname{Ran}(A)$ in orthogonal decomoposition. ightharpoonup Result:

$$\mathbb{R}^m = Ran(A) \oplus Null(A^T) \ \mathbb{R}^n = Ran(A^T) \oplus Null(A)$$

 $egin{array}{ll} ext{4 fundamental subspaces} \ Ran(A) & Null(A^T) \ Ran(A^T) & Null(A) \end{array}$

GvL 2.4, 5.4-5 – SVD

- Far from unique.
- Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.
- \blacktriangleright Can select decomposition so that R is upper triangular \rightarrow URV decomposition.
- ightharpoonup Can select decomposition so that R is lower triangular ightarrow ULV decomposition.
- ightharpoonup SVD = special case of URV where R = diagonal

How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]

The Singular Value Decomposition (SVD)

Theorem For any matrix $A\in\mathbb{R}^{m\times n}$ there exist unitary matrices $U\in\mathbb{R}^{m\times m}$ and $V\in\mathbb{R}^{n\times n}$ such that

$$A = U\Sigma V^T$$

where Σ is a diagonal matrix with entries $\sigma_{ii} \geq 0$.

$$\sigma_{11} \geq \sigma_{22} \geq \cdots \sigma_{pp} \geq 0$$
 with $p = \min(n,m)$

ightharpoonup The σ_{ii} 's are the singular values. Notation change σ_{ii} \longrightarrow σ_{i}

Proof: Let $\sigma_1=\|A\|_2=\max_{x,\|x\|_2=1}\|Ax\|_2$. There exists a pair of unit vectors v_1,u_1 such that

$$Av_1 = \sigma_1 u_1$$

9 ______ GvL 2.4, 5.4-5 – SVD

➤ Observe that

$$\left\|A_1 inom{\sigma_1}{w}
ight\|_2 \geq \sigma_1^2 + \|w\|^2 = \sqrt{\sigma_1^2 + \|w\|^2} \left\|inom{\sigma_1}{w}
ight\|_2$$

- ➤ This shows that w must be zero [why?]
- > Complete the proof by an induction argument.

ightharpoonup Complete v_1 into an orthonormal basis of \mathbb{R}^n

$$V \equiv [v_1, V_2] = n imes n$$
 unitary

ightharpoonup Complete u_1 into an orthonormal basis of \mathbb{R}^m

$$U \equiv [u_1, U_2] = m imes m$$
 unitary

Define U, V as single Householder reflectors.

> Then, it is easy to show that

$$AV = U imes egin{pmatrix} \sigma_1 & w^T \ 0 & B \end{pmatrix} \;
ightarrow \; U^T A V = egin{pmatrix} \sigma_1 & w^T \ 0 & B \end{pmatrix} \equiv A_1$$

9-10 GvL 2.4, 5.4-5 – SVD

Case 1:

=

A

=

Σ

V

Case 2:

A

U

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

 $\mathbf{V}^{\mathbf{T}}$

The "thin" SVD

Consider the Case-1. It can be rewritten as

$$A = \left[U_1 U_2
ight] egin{pmatrix} \Sigma_1 \ 0 \end{pmatrix} \, V^T$$

Which gives:

$$A = U_1 \Sigma_1 \ V^T$$

where U_1 is $m \times n$ (same shape as A), and Σ_1 and V are $n \times n$

➤ Referred to as the "thin" SVD. Important in practice.

 \blacktriangle 5 How can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

GvL 2.4, 5.4-5 - SVD

Properties of the SVD (continued)

• The matrix A admits the SVD expansion:

$$A = \sum_{i=1}^r \sigma_i u_i v_i^T$$

GvL 2.4, 5.4-5 - SVD

- $||A||_2 = \sigma_1$ = largest singular value
- ullet $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2
 ight)^{1/2}$
- ullet When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$

Theorem

9-15

[Eckart-Young-Mirsky] Let $k \leq r$ and $A_k = \sum_{i=1}^\kappa \sigma_i u_i v_i^T$ then

$$\min_{rank(B)=k} \|A-B\|_2 = \|A-A_k\|_2 = \sigma_{k+1}$$

A few properties. Assume that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$
 and $\sigma_{r+1} = \cdots = \sigma_p = 0$

Then:

- rank(A) = r = number of nonzero singular values.
- $\operatorname{Ran}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}$
- Null $(A^T) = \text{span}\{u_{r+1}, u_{r+2}, \dots, u_m\}$
- Ran (A^T) = span $\{v_1, v_2, \ldots, v_r\}$
- Null(A) = span $\{v_{r+1}, v_{r+2}, \ldots, v_n\}$

GvL 2.4, 5.4-5 - SVD

Proof: First: $||A - B||_2 \ge \sigma_{k+1}$, for any rank-k matrix B.

Consider $\mathcal{X} = \operatorname{span}\{v_1, v_2, \cdots, v_{k+1}\}$. Note:

$$dim(Null(B)) = n - k \rightarrow Null(B) \cap \mathcal{X} \neq \{0\}$$

[Why?]

Let $x_0 \in Null(B) \cap \mathcal{X}, x_0 \neq 0$. Write $x_0 = Vy$. Then

$$\|(A-B)x_0\|_2 = \|Ax_0\|_2 = \|U\Sigma V^TVy\|_2 = \|\Sigma y\|_2$$

But $\|\Sigma y\|_2 \geq \sigma_{k+1} \|x_0\|_2$ (Show this). $\to \|A-B\|_2 \geq \sigma_{k+1}$

Second: take $B = A_k$. Achieves the min.

Right and Left Singular vectors:

 $egin{aligned} Av_i &= \sigma_i u_i \ A^T u_j &= \sigma_j v_j \end{aligned}$

- $\triangleright v_i$'s = right singular vectors;
- $\triangleright u_i$'s = left singular vectors.
- ightharpoonup Consequence $A^TAv_i=\sigma_i^2v_i$ and $AA^Tu_i=\sigma_i^2u_i$
- \triangleright Right singular vectors (v_i 's) are eigenvectors of A^TA
- \triangleright Left singular vectors (u_i 's) are eigenvectors of AA^T
- ightharpoonup Possible to get the SVD from eigenvectors of AA^T and A^TA but: difficulties due to non-uniqueness of the SVD

-17 ______ GvL 2.4, 5.4-5 – SVD

 \triangleright Similarly, U gives the eigenvectors of AA^T .

$$AA^T = U \underbrace{ egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{m imes m} U^T$$

Important:

 $A^TA = VD_1V^T$ and $AA^T = UD_2U^T$ give the SVD factors U, V up to signs!

9-19 ______ GvL 2.4, 5.4-5 – SVD

Define the $r \times r$ matrix

$$\Sigma_1 = \mathrm{diag}(\sigma_1, \ldots, \sigma_r)$$

▶ Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A \in \mathbb{R}^{n \times n}$):

$$A^TA = V\Sigma^T\Sigma V^T \, o \, A^TA = V \, \underbrace{ egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \end{pmatrix}}_{n imes n} V^T$$

 \triangleright This gives the spectral decomposition of A^TA .

9-18 GvL 2.4, 5.4-5 – SVD