
CSci 5304, F’24 Solution keys to some exercises from: Set 1

✍2 (AT )T =?? Solution: (AT )T = A

✍3 (AB)T =?? Solution: (AB)T = BTAT

✍4 (AH)H =?? Solution: (AH)H = A

✍5 (AH)T =?? Solution: (AH)T = Ā

✍6 (ABC)T =?? Solution: (ABC)T = CTBTAT

✍7 True/False: (AB)C = A(BC) Solution:→ True

✍8 True/False: AB = BA Solution:→ false in gen-

eral

✍9 True/False: AAT = ATA Solution:→ false in

general

✍12 Complexity? [number of multiplications and additions for ma-

trix multiply]

Solution: Let A ∈ Rm×n and B ∈ Rn×p. Then the product AB

requires 2mnp operations (there are mp entries in all and each of

them requires 2n operations).
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✍13 What happens to these 3 different approches to matrix-matrix

multiplication when B has one column (p = 1)?

Solution: In the first: C:,j the j=th column of C is a linear combina-

tion of the columns of A. This is the usual matrix-vector product.

In the second: Ci,: is just a number which is the inner product of the

ith row of A with the column B.

The 3rd formula will give the exact same expression as the first.

✍14 Characterize the matrices AAT and ATA when A is of dimen-

sion n× 1.

Solution: When A ∈ Rn×1 then AAT is a rank-one n × n matrix

and ATA is a scalar: the inner product of the column A with itself.

✍15 Show that for 2 vectors u, v we have vT ⊗ u = uvT

Solution: The j−th column of vT ⊗ u is just vj.u This is also the

jth column of uvT .

✍16 Show that A ∈ Rm×n is of rank one iff [if and only if] there
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exist two nonzero vectors u ∈ Rm and v ∈ Rn such that

A = uvT .

What are the eigenvalues and eigenvectors of A?

Solution: (a: First part)

← First we show that: When both u and v are nonzero vectors then

the rank of a matrix of the matrix A = uvT is one. The range of A is

the set of all vectors of the form

y = Ax = uvTx = (vTx)u

since u is a nonzero vector, and not all vectors vTx are zero (because

v ̸= 0) then this space is of dimension 1.

→Next we show that: If A is of rank one than there exist nonzero vec-

tors u, v such that A = uvT . If A is of rank one, then Ran(A) =

Span{u} for some nonzero vector u. So for every vector x, the

vector Ax is a multiple of u. Let e1, e2, · · · , en the vectors of the

canonical basis of Rn and let ν1, ν2, · · · , νn the scalars such that

Aei = νiu. Define v = [ν1, ν2, · · · , νn]
T . Then A = uvT

because the matrices A and uvT have the same columns. (Note that

the j-th column of A is the vector Aej). In addition, v ̸= 0 otherwise
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A == 0 which would be a contradiction because rank(A) = 1.

(b: second part) Eigenvalues /vectors

Write Ax = λx then notice that this means (vTx)u = λx so either

vTx = 0 and λ = 0 or x = u and λ = vTu. Two eigenvalues: 0

and vTx...

✍17 Is it true that

rank(A) = rank(Ā) = rank(AT ) = rank(AH) ?

Solution: The answer is yes and it follows from the fact that the ranks

of A and AT are the same and the ranks of A and Ā are also the same.

It is known that rank(A) = rank(AT ). We now compare the

ranks of A and Ā (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly

independent then so is its conjugate. [convince yourself of this by

looking at material from 2033]. If A has rank r and for example its

first r columns are the basis of the range, the the same r columns of

Ā are also linearly independent. So rank(Ā) ≥ rank(A). Now

you can use a similar argument to show that rank(A) ≥ rank(Ā).
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Therefore the ranks are the same.

✍21 Eigenvalues of two similar matrices A and B are the same.

What about eigenvectors?

Solution: If Au = λu then XBX−1u = λu → B(X−1u) =

λ(X−1u) → λ is an eigenvalue of B with eigenvector X−1u (note

that the vector X−1u cannot be equal to zero because u ̸= 0.)

✍22 Given a polynomial p(t) how would you define p(A)?

Solution: If p(t) = α0 + α1t + α2t
2 + · · ·+ αkt

k then

p(A) = α0I + α1A + α2A
2 + · · ·+ αkA

k where:

Aj = A×A× · · · ×A︸ ︷︷ ︸
jtimes

✍23 Given a function f(t) (e.g., et) how would you define f(A)?

[You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expan-
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sion..

f(A) = f(0)I +
f ′(0)

1!
A +

f ′′(0)

2!
A2 · · ·

f (k)(0)

k!
Ak + · · ·

However, this will require a justification: Will this expression ‘con-

verge’ as the number of terms goes to infinity? This is where norms

are useful. We will revisit this in next set.

✍24 If A is nonsingular what are the eigenvalues/eigenvectors of

A−1?

Solution: Assume that Au = λu. Multiply both sides by the inverse

of A: u = λA−1u - then by the inverse of λ: λ−1u = A−1u.

Therefore, 1/λ is an eigenvalue and u is an associated eigenvector.

✍25 What are the eigenvalues/eigenvectors of Ak for a given integer

power k?

Solution: Assume that Au = λu. Multiply both sides by A and

repeat k times. You will get Aku = λku. Therefore, λk is an

eigenvalue of Ak and u is an associated eigenvector.

✍26 What are the eigenvalues/eigenvectors of p(A) for a polyno-

mial p?
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Solution: Using the previous result you can show that p(λ) is an

eigenvalue of p(A) and u is an associated eigenvector.

✍27 What are the eigenvalues/eigenvectors of f(A) for a function

f? [Diagonalizable case]

Solution: This will require using the diagonalized form of A: A =

XDX−1. With this f(A) = Xf(D)X−1. It becomes clear that

the eigenvalues are the diagonal entries of f(D), i.e., the values f(λi)

for i = 1, · · · , n. As for the eigenvectors - recall that they are the

columns of the X matrix in the diagonalized form – And X is the

same for A and f(A). So the eigenvectors are the same.

✍28 For two n × n matrices A and B are the eigenvalues of AB

and BA the same?

Solution: We will show that if λ is an eigenvalue of AB then it is also

an eigenvalue of BA. Assume that ABu = λu and multiply both

sides by B. Then BABu = λBu – which we write in the form:

BAv = λv where v = Bu. In the situation when v ̸= 0, we

clearly see that λ is a nonzero eigenvalue of BA with the associated

eigenvector v. We now deal with the case when v = 0. In this case,

since ABu = λu, and u ̸= 0 we must have λ = 0. However,
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clearly λ = 0 is also an eigenvalue of BA because det(BA) =

det(AB) = 0.

We can similarly show that any eigenvalue of BA are also eigenvalues

of AB by interchanging the roles of A and B. This completes the

proof

✍29 Trace, spectral radius, and determinant of A =

2 1

3 0

 .

Solution: Trace is 2, determinant is −3. Eigenvalues are 3,−1 so

ρ(A) = 3.

Exercises on determinants – all are rather straightforward except the

following two.

✍35 Let A be a nonsingular diagonal n× n matrix. Show that:

log det(A) = Trace(log(A))

Solution: If A = diag(d1, d2, · · · , dn) then

det(A) =
n∏

i=1

dii → log det(A) = log
n∏

i=1

di =
n∑

i=1

log di.
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Now f(A) is just the matrix with diagonal entrues f(di).

log det(A) =
n∑

i=1

log(di) = Tr (log(A)).

✍36 Let C = {cij}i,j=1:n ≡ matrix of cofactors. Show that

ACT = det(A)× I . So A−1 =?

Solution: Consider (ACT )ii this is just the expansopn of det(A) w.r.t.

row i shown in Page 1-38.

Consider (ACT )ij =
∑

aikcjk with j ̸= i. This is the expression

of det(B) where B is obtained from A by copying the i=th row of A

over its j-th row. This determinant is zero (since B has two identical

rows). In the end ACT = det(A)× I

This gives the well-known formula:

A−1 =
1

det(A)
CT .
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Basics on matrices [Csci2033 notes]

➤ If A is an m × n matrix (m rows and n columns)
–then the scalar entry in the ith row and jth column of
A is denoted by aij and is called the (i, j)-entry of A.

Column j

↓

Row i→


a11 · · · a1j · · · a1n

... ... ...
ai1 · · · aij · · · ain

... ... ...
am1 · · · amj · · · amn

 = A

↑ ↑ ↑
a:1 a:j a:n

➤ aij == ith entry (from the top) of the jth column

➤ Each column of A is a list of m real numbers, which
identifies a vector in Rm called a column vector

➤ The columns a:1..., a:n - denoted by a1, a2, · · · , an

so A = [a1, a2, · · · , an]

➤ The diagonal entries in an m × n matrix A are
a11, a22, a33. They form the main diagonal of A.
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➤ A diagonal matrix is a matrix whose nondiagonal en-
tries are zero

➤ The n× n identity matrix In Example:

I3 =

 1 0 0

0 1 0

0 0 1



1-11 – – –
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Matrix Multiplication

➤ When a matrix B multiplies a vector x, it transforms
x into the vector Bx.

➤ If this vector is then multiplied in turn by a matrix A,
the resulting vector is A(Bx).

x

Product by B Product by A

A(Bx)Bx

➤ Thus A(Bx) is produced from x by a composition
of mappings–the linear transformations induced by B

and A.

➤ Note: x→ A(Bx) is a linear mapping (prove this).

Goal: to represent this composite mapping as a mul-
tiplication by a single matrix, call it C for now, so that

A(Bx) = Cx

.

1-12 – – –
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x

Product by B Product by A

Bx
A(Bx)

C 

➤ Assume A is m × n, B is n × p , and x is in Rp.
Denote the columns of B by b1, · · · , bp and the entries
in x by x1, · · · , xp. Then:

Bx = x1b1 + · · ·+ xpbp

➤ By the linearity of multiplication by A:

A(Bx) = A(x1b1) + · · ·+ A(xpbp)

= x1Ab1 + · · ·+ xpAbp

➤ The vector A(Bx) is a linear combination of Ab1,
· · · , Abp, using the entries in x as weights.

➤ Matrix notation: this linear combination is written as

A(Bx) = [Ab1, Ab2, · · ·Abp].x

➤ Thus, multiplication by [Ab1, Ab2, · · · , Abp] trans-
forms x into A(Bx).
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1-13



➤ Therefore the desired matrix C is the matrix

C = [Ab1, Ab2, · · · , Abp]

Definition: If A is an m × n matrix, and if B

is an n × p matrix with columns b1, · · · , bp, then
the product AB is the matrix whose p columns are
Ab1, · · · , Abp. That is:

AB = A[b1, b2, · · · , bp] = [Ab1, Ab2, · · · , Abp]

➤ Remeber

Multiplication of matrices corresponds to com-
position of linear transformations.
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1-14



✍ Operation count: How many operations are required
to perform product AB?

✍ Compute AB when:

A =

[
2 −1
1 3

]
B =

[
0 2 −1
1 3 −2

]

✍ Compute AB when:

A =

2 −1 2 0

1 −2 1 0

3 −2 0 0

 B =


1 −1 −2
0 −2 2

2 1 −2
−1 3 2


✍ Can you compute AB when:

A =

[
2 −1
1 3

]
B =

 0 2

1 3

−1 4

?
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Row-wise matrix product

➤ Recall what we did with matrix-vector product to com-
pute a single entry of the vector Ax

➤ Can we do the same thing here? i.e., How can we
compute the entry cij of the product AB without com-
puting entire columns?

✍ Do this to compute entry (2, 2) in the first example
above.

✍ Operation counts: Is more or less expensive to per-
form the matrix-vector product row-wise instead of column-
wise?

1-16 – – –
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Properties of matrix multiplication

Theorem Let A be an m×n matrix, and let B and C

have sizes for which the indicated sums and products
are defined. Then:
• A(BC) = (AB)C (associative law of multiplica-
tion)
• A(B + C) = AB + AC (left distributive law)
• (B + C)A = BA + CA (right distributive law)
• α(AB) = (αA)B = A(αB) for any scalar α
• ImA = AIn = A (product with identity)

✍ If AB = AC then B = C (’simplification’) : True-
False?

✍ If AB = 0 then either A = 0 or B = 0 : True or
False?

✍ AB = BA : True or false??

1-17 – – –
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Square matrices. Matrix powers

➤ Important particular case when n = m - so matrix
is n× n

➤ In this case if x is in Rn then y = Ax is also in Rn

➤ AA is also a square n × n matrix and will be de-
noted by A2

➤ More generally, the matrix Ak is the matrix which is
the product of k copies of A:

A1 = A; A2 = AA; · · · Ak = A · · ·A︸ ︷︷ ︸
k times

➤ For consistency define A0 to be the identity: A0 =

In,

✍ Al ×Ak = Al+k – Also true when k or l is zero.

1-18 – – –
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Transpose of a matrix

Given an m × n matrix A, the transpose of A is the
n × m matrix, denoted by AT , whose columns are
formed from the corresponding rows of A.

Theorem : Let A and B denote matrices whose
sizes are appropriate for the following sums and
products. Then: • (AT )T = A

• (A + B)T = AT + BT

• (αA)T = αAT for any scalar α
• (AB)T = BTAT

1-19 – – –
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More on matrix products

➤ Recall: Product of the matrix A by the vector x: (aj

== jth column of A)

y A x
β1
...
βj
...
βn

 =


a11 · · · a1j · · · a1n

... ... ...
ai1 · · · aij · · · ain
... ... ...

am1 · · · amj · · · amn




α1
...
αj
...

αn


= α1a1 + α2a2 + · · ·+ αnan

• x, y are vectors; y is the result of A× x.

• a1, a2, ..., an are the columns of A

• α1, α2, ..., αn are the components of x [scalars]

• α1a1 is the first column of A multiplied by the scalar
α1 which is the first component of x.

• α1a1 + α2a2 + · · · + αnan is a linear combination
of a1, a2, · · · , an with weights α1, α2, ..., αn.

➤ This is the ‘column-wise’ form of the ‘matvec’
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Example:

A =

[
1 2 −1
0 −1 3

]
x =

−21
−3

 y =?

➤ Result:

y = −2×
[
1

0

]
+ 1×

[
2

−1

]
− 3×

[
−1
3

]
=

[
3

−10

]

➤ Can get i-th component of the result y without the
others: βi = α1ai1 + α2ai2 + · · ·+ αnain

Example: In the above example extract β2

β2 = (−2)× 0 + (1)× (−1) + (−3)× (3) = −10

➤ Can compute β1, β2, · · · , βm in this way.

➤ This is the ‘row-wise’ form of the ‘matvec’
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Matrix-Matrix product

➤ Recall:

➤ When A is m× n, B is n× p, the product AB of
the matrices A and B is the m× p matrix defined as

AB = [Ab1, Ab2, · · · , Abp]

where b1, b2, · · · , bp are the columns of B

➤ Each Abj == product of A by the j-th column of B.
Matrix AB is in Rm×p

➤ Can use what we know on matvecs to perform the
product

1. Column form – In words: “The j-th column of
AB is a linear combination of the columns of A, with
weights b1j, b2j, · · · , bnj ” (entries of j-th col. of B)

Example:

A =

[
1 2 −1
0 −1 3

]
B =

−2 1

1 −2
−3 2

 AB =?
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➤ Result:

B =

[1 2 −1
0 −1 3

] −21
−3

 ,

[
1 2 −1
0 −1 3

]  1

−2
2




=

[
3 −6
−10 8

]

➤ First column has been computed before: it is equal
to:
(−2)*(col. 1 of A) + (1)*(col. 2 of A) + (−3)*(col. 3
of A)

➤ Second column is equal to:
(1)*(col. 1 of A) + (−2)*(col. 2 of A) + (2)*(col. 3 of
A)

2. If we call C the matrix C = AB what is cij? From
above:

cij = ai1b1j + ai2b2j + · · ·+ aikbkj + · · ·+ ainbnj

➤ Fix j and run i −→ column-wise form just seen

3. Fix i and run j −→ row-wise form
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Example: Get second row of AB in previous ex-
ample.

c2j = a21b1j + a22b2j + a23b3j, j = 1, 2

• Can be read as : c2: = a21b1: + a22b2: + a23b3: , or
in words:

row2 of C = a21 (row1 of B) + a22 (row2 of B) + a23

(row3 of B)
= 0 (row1 of B) + (-1) (row2 of B) + (3) (row3

of B)
= [−10 8]
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