CSci 5304, F'24 Solution keys to some exercises from: Set 1

$$\triangle 2 (A^T)^T = ??$$

Solution: $(A^T)^T = A$

$$(AB)^T = ??$$

Solution: $(AB)^T = B^T A^T$

$$\triangle 4 (A^H)^H = ??$$

Solution: $(A^H)^H = A$

$$\triangle 5 (A^H)^T = ??$$

Solution: $(A^H)^T = \bar{A}$

$$\triangle 6$$
 $(ABC)^T = ??$

Solution: $(ABC)^T = C^T B^T A^T$

 \bigtriangleup True/False: (AB)C = A(BC)

Solution: \rightarrow True

Solution: \rightarrow false in gen-

eral

True/False: $AA^T = A^TA$

Solution: \rightarrow false in

general

Complexity? [number of multiplications and additions for matrix multiply]

Solution: Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product AB requires 2mnp operations (there are mp entries in all and each of them requires 2n operations).

What happens to these 3 different approaches to matrix-matrix multiplication when \boldsymbol{B} has one column $(\boldsymbol{p}=1)$?

Solution: In the first: $C_{:,j}$ the j=th column of C is a linear combination of the columns of A. This is the usual matrix-vector product.

In the second: $C_{i,:}$ is just a number which is the inner product of the ith row of A with the column B.

The 3rd formula will give the exact same expression as the first.

Characterize the matrices AA^T and A^TA when A is of dimension $n \times 1$.

Solution: When $A \in \mathbb{R}^{n \times 1}$ then AA^T is a rank-one $n \times n$ matrix and A^TA is a scalar: the inner product of the column A with itself.

Show that for 2 vectors u, v we have $v^T \otimes u = uv^T$

Solution: The j-th column of $v^T\otimes u$ is just $v_j.u$ This is also the jth column of uv^T .

Show that $A \in \mathbb{R}^{m \times n}$ is of rank one iff [if and only if] there

exist two nonzero vectors $oldsymbol{u} \in \mathbb{R}^m$ and $oldsymbol{v} \in \mathbb{R}^n$ such that

$$A = uv^T$$
.

What are the eigenvalues and eigenvectors of A?

Solution: (a: First part)

 \leftarrow First we show that: When both u and v are nonzero vectors then the rank of a matrix of the matrix $A=uv^T$ is one. The range of A is the set of all vectors of the form

$$y = Ax = uv^Tx = (v^Tx)u$$

since u is a nonzero vector, and not all vectors $v^T x$ are zero (because $v \neq 0$) then this space is of dimension 1.

Next we show that: If A is of rank one than there exist nonzero vectors u, v such that $A = uv^T$. If A is of rank one, then $Ran(A) = Span\{u\}$ for some nonzero vector u. So for every vector x, the vector Ax is a multiple of u. Let e_1, e_2, \cdots, e_n the vectors of the canonical basis of \mathbb{R}^n and let $\nu_1, \nu_2, \cdots, \nu_n$ the scalars such that $Ae_i = \nu_i u$. Define $v = [\nu_1, \nu_2, \cdots, \nu_n]^T$. Then $A = uv^T$ because the matrices A and uv^T have the same columns. (Note that the j-th column of A is the vector Ae_j). In addition, $v \neq 0$ otherwise

A == 0 which would be a contradiction because rank(A) = 1.

(b: second part) Eigenvalues /vectors

Write $Ax = \lambda x$ then notice that this means $(v^Tx)u = \lambda x$ so either $v^Tx = 0$ and $\lambda = 0$ or x = u and $\lambda = v^Tu$. Two eigenvalues: 0 and v^Tx ...

△17 Is it true that

$$\operatorname{rank}(A) = \operatorname{rank}(\bar{A}) = \operatorname{rank}(A^T) = \operatorname{rank}(A^H) ?$$

Solution: The answer is yes and it follows from the fact that the ranks of A and A^T are the same and the ranks of A and \bar{A} are also the same.

It is known that $rank(A) = rank(A^T)$. We now compare the ranks of A and \bar{A} (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly independent then so is its conjugate. [convince yourself of this by looking at material from 2033]. If A has rank r and for example its first r columns are the basis of the range, the the same r columns of \bar{A} are also linearly independent. So $rank(\bar{A}) \geq rank(A)$. Now you can use a similar argument to show that $rank(A) \geq rank(\bar{A})$.

Therefore the ranks are the same.

Eigenvalues of two similar matrices A and B are the same. What about eigenvectors?

Solution: If $Au = \lambda u$ then $XBX^{-1}u = \lambda u \to B(X^{-1}u) = \lambda(X^{-1}u) \to \lambda$ is an eigenvalue of B with eigenvector $X^{-1}u$ (note that the vector $X^{-1}u$ cannot be equal to zero because $u \neq 0$.)

Solution: If $p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \cdots + \alpha_k t^k$ then

$$p(A) = \alpha_0 I + \alpha_1 A + \alpha_2 A^2 + \cdots + \alpha_k A^k$$
 where:

$$A^{j} = \underbrace{A \times A \times \cdots \times A}_{j \text{ times}}$$

Given a function f(t) (e.g., e^t) how would you define f(A)?

[You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expan-

sion..

$$f(A) = f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 \cdots rac{f^{(k)}(0)}{k!}A^k + \cdots$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful. We will revisit this in next set.

If A is nonsingular what are the eigenvalues/eigenvectors of A^{-1} ?

Solution: Assume that $Au = \lambda u$. Multiply both sides by the inverse of A: $u = \lambda A^{-1}u$ - then by the inverse of λ : $\lambda^{-1}u = A^{-1}u$. Therefore, $1/\lambda$ is an eigenvalue and u is an associated eigenvector.

What are the eigenvalues/eigenvectors of A^k for a given integer power k?

Solution: Assume that $Au = \lambda u$. Multiply both sides by A and repeat k times. You will get $A^k u = \lambda^k u$. Therefore, λ^k is an eigenvalue of A^k and u is an associated eigenvector.

What are the eigenvalues/eigenvectors of p(A) for a polynomial p?

Solution: Using the previous result you can show that $p(\lambda)$ is an eigenvalue of p(A) and u is an associated eigenvector.

What are the eigenvalues/eigenvectors of f(A) for a function f? [Diagonalizable case]

Solution: This will require using the diagonalized form of A: $A = XDX^{-1}$. With this $f(A) = Xf(D)X^{-1}$. It becomes clear that the eigenvalues are the diagonal entries of f(D), i.e., the values $f(\lambda_i)$ for $i = 1, \dots, n$. As for the eigenvectors - recall that they are the columns of the X matrix in the diagonalized form – And X is the same for A and f(A). So the eigenvectors are the same.

For two $n \times n$ matrices A and B are the eigenvalues of AB and BA the same?

Solution: We will show that if λ is an eigenvalue of AB then it is also an eigenvalue of BA. Assume that $ABu = \lambda u$ and multiply both sides by B. Then $BABu = \lambda Bu$ — which we write in the form: $BAv = \lambda v$ where v = Bu. In the situation when $v \neq 0$, we clearly see that λ is a nonzero eigenvalue of BA with the associated eigenvector v. We now deal with the case when v = 0. In this case, since $ABu = \lambda u$, and $u \neq 0$ we must have $\lambda = 0$. However,

clearly $\lambda=0$ is also an eigenvalue of BA because $\det(BA)=\det(AB)=0.$

We can similarly show that any eigenvalue of BA are also eigenvalues of AB by interchanging the roles of A and B. This completes the proof

Trace, spectral radius, and determinant of
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$$
.

Solution: Trace is 2, determinant is -3. Eigenvalues are 3, -1 so $\rho(A) = 3$.

Exercises on determinants – all are rather straightforward except the following two.

 \triangle 135 Let A be a nonsingular diagonal $n \times n$ matrix. Show that:

$$\log \det(A) = \operatorname{Trace}(\log(A))$$

Solution: If $A = \operatorname{diag}(d_1, d_2, \cdots, d_n)$ then

$$\det(A) = \prod_{i=1}^n di_i \quad o \quad \log \det(A) = \log \prod_{i=1}^n d_i = \sum_{i=1}^n \log d_i.$$

Now f(A) is just the matrix with diagonal entrues $f(d_i)$.

$$\log \det(A) = \sum_{i=1}^n \log(d_i) = \operatorname{Tr}\left(\log(A)\right).$$

Let $C=\{c_{ij}\}_{i,j=1:n}\equiv$ matrix of cofactors. Show that $AC^T=\det(A)\times I$. So $A^{-1}=?$

Solution: Consider $(AC^T)_{ii}$ this is just the expansopn of det(A) w.r.t. row i shown in Page 1-38.

Consider $(AC^T)_{ij} = \sum a_{ik}c_{jk}$ with $j \neq i$. This is the expression of $\det(B)$ where B is obtained from A by copying the i=th row of A over its j-th row. This determinant is zero (since B has two identical rows). In the end $AC^T = \det(A) \times I$

This gives the well-known formula:

$$A^{-1} = \frac{1}{\det(A)}C^T.$$

Basics on matrices [Csci2033 notes]

If A is an $m \times n$ matrix (m rows and n columns) —then the scalar entry in the ith row and jth column of A is denoted by a_{ij} and is called the (i,j)-entry of A.

- $ightharpoonup a_{ij} == i$ th entry (from the top) of the jth column
- \triangleright Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m called a column vector
- lacksquare The columns $a_{:1}...,a_{:n}$ denoted by a_1,a_2,\cdots,a_n so $A=[a_1,a_2,\cdots,a_n]$
- The diagonal entries in an $m \times n$ matrix A are a_{11}, a_{22}, a_{33} . They form the main diagonal of A.

- ➤ A diagonal matrix is a matrix whose nondiagonal entries are zero
- ightharpoonup The n imes n identity matrix I_n Example:

$$m{I}_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Matrix Multiplication

- ightharpoonup When a matrix B multiplies a vector x, it transforms x into the vector Bx.
- If this vector is then multiplied in turn by a matrix A, the resulting vector is A(Bx).

- Thus A(Bx) is produced from x by a composition of mappings—the linear transformations induced by B and A.
- ightharpoonup Note: x o A(Bx) is a linear mapping (prove this).

Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$A(Bx) = Cx$$

.

Assume A is $m \times n$, B is $n \times p$, and x is in \mathbb{R}^p . Denote the columns of B by b_1, \dots, b_p and the entries in x by x_1, \dots, x_p . Then:

$$Bx = x_1b_1 + \cdots + x_pb_p$$

By the linearity of multiplication by A:

$$egin{aligned} A(Bx) &= A(x_1b_1) + \cdots + A(x_pb_p) \ &= x_1Ab_1 + \cdots + x_pAb_p \end{aligned}$$

- The vector A(Bx) is a linear combination of Ab_1 , \cdots , Ab_p , using the entries in x as weights.
- Matrix notation: this linear combination is written as

$$A(Bx) = [Ab_1, Ab_2, \cdots Ab_p].x$$

ightharpoonup Thus, multiplication by $[Ab_1,Ab_2,\cdots,Ab_p]$ transforms x into A(Bx).

1-13

> Therefore the desired matrix C is the matrix

$$C=[Ab_1,Ab_2,\cdots,Ab_p]$$

Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \dots, b_p , then the product AB is the matrix whose p columns are Ab_1, \dots, Ab_p . That is:

$$AB = A[b_1, b_2, \cdots, b_p] = [Ab_1, Ab_2, \cdots, Ab_p]$$

> Remeber

Multiplication of matrices corresponds to composition of linear transformations.

 \triangle Operation count: How many operations are required to perform product AB?

 \triangle Compute AB when:

$$A = egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B = egin{bmatrix} 0 & 2 & -1 \ 1 & 3 & -2 \end{bmatrix}$$

 \triangle Compute AB when:

$$A = egin{bmatrix} 2 & -1 & 2 & 0 \ 1 & -2 & 1 & 0 \ 3 & -2 & 0 & 0 \end{bmatrix} \quad B = egin{bmatrix} 1 & -1 & -2 \ 0 & -2 & 2 \ 2 & 1 & -2 \ -1 & 3 & 2 \end{bmatrix}$$

 \triangle Can you compute AB when:

$$A = egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B = egin{bmatrix} 0 & 2 \ 1 & 3 \ -1 & 4 \end{bmatrix} ?$$

Row-wise matrix product

- ightharpoonup Recall what we did with matrix-vector product to compute a single entry of the vector Ax
- \triangleright Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?
- \triangle Do this to compute entry (2,2) in the first example above.
- Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?

1-16

Properties of matrix multiplication

Theorem Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined. Then:

- ullet A(BC) = (AB)C (associative law of multiplication)
- A(B+C) = AB + AC (left distributive law)
- (B+C)A = BA + CA (right distributive law)
- ullet $\alpha(AB)=(\alpha A)B=A(\alpha B)$ for any scalar α
- $I_m A = A I_n = A$ (product with identity)

If AB=AC then B=C ('simplification') : True-False?

If AB=0 then either A=0 or B=0: True or False?

 $\triangle AB = BA$: True or false??

Square matrices. Matrix powers

- ightharpoonup Important particular case when n=m so matrix is n imes n
- ightharpoonup In this case if x is in \mathbb{R}^n then y=Ax is also in \mathbb{R}^n
- ightharpoonup AA is also a square n imes n matrix and will be denoted by A^2
- ightharpoonup More generally, the matrix A^k is the matrix which is the product of k copies of A:

$$A^1 = A;$$
 $A^2 = AA;$ \cdots $A^k = \underbrace{A \cdots A}_{k \text{ times}}$

- ightharpoonup For consistency define A^0 to be the identity: $A^0=I_n$,

Transpose of a matrix

Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Theorem: Let A and B denote matrices whose sizes are appropriate for the following sums and products. Then: \bullet $(A^T)^T = A$

- $\bullet (A+B)^T = A^T + B^T$
- ullet $(\alpha A)^T = \alpha A^T$ for any scalar α
- $\bullet \ (AB)^T = B^T A^T$

1-19

More on matrix products

Recall: Product of the matrix A by the vector x: $(a_j = j \text{th column of } A)$

- x, y are vectors; y is the result of $A \times x$.
- ullet $a_1, a_2, ..., a_n$ are the columns of A
- ullet $\alpha_1, \alpha_2, ..., \alpha_n$ are the components of x [scalars]
- $\alpha_1 a_1$ is the first column of A multiplied by the scalar α_1 which is the first component of x.
- $\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$ is a linear combination of a_1, a_2, \cdots, a_n with weights $\alpha_1, \alpha_2, ..., \alpha_n$.
- > This is the 'column-wise' form of the 'matvec'

Example:

$$A=egin{bmatrix}1&2&-1\0&-1&3\end{bmatrix}\quad x=egin{bmatrix}-2\1\-3\end{bmatrix}\quad y=?$$

> Result:

$$y = -2 imes egin{bmatrix} 1 \ 0 \end{bmatrix} + 1 imes egin{bmatrix} 2 \ -1 \end{bmatrix} - 3 imes egin{bmatrix} -1 \ 3 \end{bmatrix} = egin{bmatrix} 3 \ -10 \end{bmatrix}$$

 \succ Can get i-th component of the result y without the others: $\beta_i = \alpha_1 a_{i1} + \alpha_2 a_{i2} + \cdots + \alpha_n a_{in}$

Example: In the above example extract β_2

$$\beta_2 = (-2) \times 0 + (1) \times (-1) + (-3) \times (3) = -10$$

- ightharpoonup Can compute eta_1,eta_2,\cdots,eta_m in this way.
- This is the 'row-wise' form of the 'matvec'

Matrix-Matrix product

- > Recall:
- ➤ When A is $m \times n$, B is $n \times p$, the product AB of the matrices A and B is the $m \times p$ matrix defined as

$$AB = [Ab_1, Ab_2, \cdots, Ab_p]$$

where b_1, b_2, \cdots, b_p are the columns of B

- ightharpoonup Each Ab_j == product of A by the j-th column of B. Matrix AB is in $\mathbb{R}^{m \times p}$
- ➤ Can use what we know on matvecs to perform the product
- 1. Column form In words: "The j-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \dots, b_{nj}$ " (entries of j-th col. of B)

Example:

$$A = egin{bmatrix} 1 & 2 & -1 \ 0 & -1 & 3 \end{bmatrix} \quad B = egin{bmatrix} -2 & 1 \ 1 & -2 \ -3 & 2 \end{bmatrix} \quad AB = ?$$

> Result:

$$B = \begin{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & -6 \\ -10 & 8 \end{bmatrix}$$

- First column has been computed before: it is equal to:
- $(-2)^*(\operatorname{col.}\ 1\ \operatorname{of}\ A)$ + $(1)^*(\operatorname{col.}\ 2\ \operatorname{of}\ A)$ + $(-3)^*(\operatorname{col.}\ 3$ of A)
- Second column is equal to:

$$(1)^*(\operatorname{col.}\ 1\ \operatorname{of}\ A)+(-2)^*(\operatorname{col.}\ 2\ \operatorname{of}\ A)+(2)^*(\operatorname{col.}\ 3\ \operatorname{of}\ A)$$

2. If we call C the matrix C = AB what is c_{ij} ? From above:

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj}$$

- ightharpoonup Fix j and run $i \longrightarrow$ column-wise form just seen
- 3. Fix i and run $j \longrightarrow$ row-wise form

$$c_{2j}=a_{21}b_{1j}+a_{22}b_{2j}+a_{23}b_{3j},\quad j=1,2$$

ullet Can be read as : $egin{aligned} c_{2:} = a_{21}b_{1:} + a_{22}b_{2:} + a_{23}b_{3:} \end{aligned}$, or in words:

row2 of C = a_{21} (row1 of B) + a_{22} (row2 of B) + a_{23} (row3 of B)

= 0 (row1 of B) + (-1) (row2 of B) + (3) (row3)

of B)

$$= [-10 \ 8]$$