VECTOR & MATRIX NORMS

- Inner products
- Vector norms
- Matrix norms
- Introduction to singular values
- Expressions of some matrix norms.

Properties of Inner Products:

- $ightharpoonup (x,y) = \overline{(y,x)}.$
- $ightharpoonup (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$ [Linearity]
- $(x,x) \ge 0$ is always real and non-negative.
- (x,x) = 0 iff x = 0 (for finite dimensional spaces).
- ightharpoonup Given $A \in \mathbb{C}^{m \times n}$ then

$$(Ax,y)=(x,A^Hy) \ \ orall \ x \ \in \ \mathbb{C}^n, orall y \ \in \ \mathbb{C}^m$$

Inner product of 2 vectors

 \blacktriangleright Inner product of 2 vectors x and y in \mathbb{R}^n :

$$x_1y_1+x_2y_2+\cdots+x_ny_n$$
 in \mathbb{R}^n

Notation: (x, y) or y^Tx

➤ For complex vectors

$$(x,y)=x_1ar{y}_1+x_2ar{y}_2+\cdots+x_nar{y}_n$$
 in \mathbb{C}^n

Note: $(x,y) = y^H x$

ullet On notation: Sometimes you will find $\langle .,.
angle$ for (.,.) and A^* instead of A^H

2 GvL 2.2-2.3; – Norms

Vector norms

Norms are needed to measure lengths of vectors and closeness of two vectors. Examples of use: Estimate convergence rate of an iterative method; Estimate the error of an approximation to a given solution; ...

ightharpoonup A vector norm on a vector space $\mathbb X$ is a real-valued function $x\in\mathbb X\to\|x\|\in\mathbb R$, which satisfies the following three conditions:

- 1. $||x|| \ge 0$, $\forall x \in \mathbb{X}$, and ||x|| = 0 iff x = 0.
- 2. $\|\alpha x\| = |\alpha| \|x\|, \quad \forall x \in \mathbb{X}, \quad \forall \alpha \in \mathbb{C}.$
- 3. $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in X$.
- ➤ Third property is called the triangle inequality.

Important example: Euclidean norm on $\mathbb{X} = \mathbb{C}^n$,

on
$$\mathbb{X}=\mathbb{C}^n$$

$$\|x\|_2 = (x,x)^{1/2} = \sqrt{|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2}$$

Show that when Q is orthogonal then $||Qx||_2 = ||x||_2$

Most common vector norms in numerical linear algebra: special cases of the Hölder norms (for $p \geq 1$):

$$\|x\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}.$$

Find out (online search) how to show that these are indeed norms for any p>1(Not easy for 3rd requirement!)

GvL 2.2-2.3; - Norms

➤ The Cauchy-Schwartz inequality (important) is:

$$|(x,y)| \leq ||x||_2 ||y||_2.$$

Expand (x + y, x + y). What does the Cauchy-Schwarz inequality imply?

ightharpoonup The Hölder inequality (less important for $p \neq 2$) is:

$$|(x,y)| \leq \|x\|_p \|y\|_q$$
 , with $rac{1}{p} + rac{1}{q} = 1$

≤ Second triangle inequality: $|||x|| - ||y|| | \le ||x - y||$

Consider the metric $d(x,y) = max_i|x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function with respect to this metric.

Property:

ightharpoonup Limit of $||x||_p$ when $p \to \infty$ exists:

$$\lim_{p \to \infty} \|x\|_p = \max_{i=1}^n |x_i|$$

 \triangleright Defines a norm denoted by $\|.\|_{\infty}$.

 \blacktriangleright The cases p=1, p=2, and $p=\infty$ lead to the most important norms $\|.\|_p$ in practice. These are:

$$\|x\|_1 = |x_1| + |x_2| + \cdots + |x_n|, \ \|x\|_2 = \left[|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2\right]^{1/2}, \ \|x\|_\infty = \max_{i=1,\dots,n} |x_i|.$$

GvL 2.2-2.3; - Norms

Equivalence of norms:

In finite dimensional spaces (\mathbb{R}^n , \mathbb{C}^n , ...) all norms are 'equivalent': if ϕ_1 and ϕ_2 are any two norms then there exists positive constants α , β such that:

$$\beta \phi_2(x) \leq \phi_1(x) \leq \alpha \phi_2(x)$$
.

Moreover this result? [Hint: Show for $\phi_2 = \|.\|_{\infty}$]

> We can bound one norm in terms of any other norm.

Show that for any x: $\frac{1}{\sqrt{n}} ||x||_1 \leq ||x||_2 \leq ||x||_1$

Mhat are the "unit balls" $B_p = \{x \mid \|x\|_p \leq 1\}$ associated with the norms $\|.\|_p$ for $p=1,2,\infty$, in \mathbb{R}^2 ?

GvL 2.2-2.3; - Norms

GvL 2.2-2.3: - Norms

Convergence of vector sequences

A sequence of vectors $x^{(k)}$, $k=1,\ldots,\infty$ converges to a vector x with respect to the norm ||.|| if, by definition,

$$\lim_{k o\infty}\,\|x^{(k)}-x\|=0$$

- \triangleright Important point: because all norms in \mathbb{R}^n are equivalent, the convergence of $x^{(k)}$ w.r.t. a given norm implies convergence w.r.t. any other norm.
- ➤ Notation:

$$\lim_{k o\infty}x^{(k)}=x$$

GvL 2.2-2.3; - Norms

Matrix norms

 \triangleright Can define matrix norms by considering $m \times n$ matrices as vectors in \mathbb{R}^{mn} . These norms satisfy the usual properties of vector norms, i.e.,

- 1. $||A|| \ge 0$, $\forall A \in \mathbb{C}^{m \times n}$, and ||A|| = 0 iff A = 0
- 2. $\|\alpha A\| = |\alpha| \|A\|, \forall A \in \mathbb{C}^{m \times n}, \forall \alpha \in \mathbb{C}$
- 3. $||A + B|| < ||A|| + ||B||, \forall A, B \in \mathbb{C}^{m \times n}$.
- ➤ However, these will lack (in general) the right properties for composition of operators (product of matrices).
- \triangleright The case of $\|.\|_2$ yields the Frobenius norm of matrices.

Example: The sequence

$$x^{(k)} = egin{pmatrix} 1+1/k \ rac{k}{k+\log_2 k} \ rac{1}{k} \end{pmatrix}$$

converges to

$$m{x} = egin{pmatrix} 1 \ 1 \ 0 \end{pmatrix}$$

 \blacktriangleright Note: Convergence of $x^{(k)}$ to x is the same as the convergence of each individual component $x_i^{(k)}$ of $x^{(k)}$ to the corresponding component x_i of x.

GvL 2.2-2.3; - Norms

 \blacktriangleright Given a matrix A in $\mathbb{C}^{m\times n}$, define the set of matrix norms

$$\|A\|_p = \max_{x \in \mathbb{C}^n, \ x
eq 0} rac{\|Ax\|_p}{\|x\|_p}.$$

- ➤ These norms satisfy the usual properties of vector norms (see previous page).
- \blacktriangleright The matrix norm $\|.\|_p$ is induced by the vector norm $\|.\|_p$.
- \triangleright Again, important cases are for $p=1,2,\infty$.
- ightharpoonup Show that $\|A\|_p = \max_{x \in \mathbb{C}^n, \ \|x\|_p = 1} \|Ax\|_p$ and also that :

$$\|Ax\|_p \leq \|A\|_p\,\|x\|_p$$

GvL 2.2-2.3: - Norms 3-11

3-12

GvL 2.2-2.3: - Norms

Consistency / sub-mutiplicativity of matrix norms

➤ A fundamental property of matrix norms is consistency

$$||AB||_p \leq ||A||_p ||B||_p$$
.

[Also termed "sub-multiplicativity"]

- ightharpoonup Consequence: (for square matrices) $\|A^k\|_p \leq \|A\|_p^k$
- $ightharpoonup A^k$ converges to zero if any of its p-norms is < 1

[Note: sufficient but not necessary condition]

13 ______ GvL 2.2-2.3; - Norms

Compute the Frobenius norms of the matrices

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 2 & -1 \\ -1 & \sqrt{5} & 0 \\ -1 & 1 & \sqrt{2} \end{pmatrix}$$

Prove that the Frobenius norm is consistent [Hint: Use Cauchy-Schwartz]

Define the 'vector 1-norm' of a matrix A as the 1-norm of the vector of stacked columns of A. Is this norm a consistent matrix norm?

[Hint: Result is true – Use Cauchy-Schwarz to prove it.]

Frobenius norms of matrices

➤ The Frobenius norm of a matrix is defined by

$$\|A\|_F = \left(\sum_{j=1}^n \sum_{i=1}^m |a_{ij}|^2 \right)^{1/2}$$
 .

- \triangleright Same as the 2-norm of the column vector in \mathbb{C}^{mn} consisting of all the columns (respectively rows) of A.
- ➤ This norm is also consistent [but not induced from a vector norm]

14 ______ GvL 2.2-2.3; — Norms

Expressions of standard matrix norms

ightharpoonup Recall the notation: (for square $n \times n$ matrices)

 $ho(A)=\max|\lambda_i(A)|; \quad {
m Tr}\,(A)=\sum_{i=1}^n a_{ii}=\sum_{i=1}^n \lambda_i(A) \ \ {
m where} \ \ \lambda_i(A), \ i=1,2,\ldots,n$ are all eigenvalues of A

$$\|A\|_1 = \max_{j=1,...,n} \sum_{i=1}^m |a_{ij}|,$$
 $\|A\|_{\infty} = \max_{i=1,...,m} \sum_{j=1}^n |a_{ij}|,$ $\|A\|_2 = \left[
ho(A^HA)
ight]^{1/2} = \left[
ho(AA^H)
ight]^{1/2},$ $\|A\|_F = \left[\operatorname{Tr}\left(A^HA\right)
ight]^{1/2} = \left[\operatorname{Tr}\left(AA^H\right)
ight]^{1/2}.$

3-15 ______ GvL 2.2-2.3: – Norms

3-16

GvL 2.2-2.3; - Norms

Compute the p-norm for $p=1,2,\infty,F$ for the matrix $A=egin{pmatrix} 0 & 2 \ 0 & 1 \end{pmatrix}$

△14 Show that $\rho(A) \le ||A||$ for any matrix norm.

1. $ho(A) = \|A\|_2$ when A is Hermitian $(A^H = A)$. \blacktriangleright True for this particular case...

2. ... However, not true in general. For $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$ we have ho(A)=0 while

 $A \neq 0$. Also, triangle inequality not satisfied for the pair A, and $B = A^T$. Indeed, $\rho(A+B) = 1$ while $\rho(A) + \rho(B) = 0$.

Given a function f(t) (e.g., e^t) how would you define f(A)? [Was seen earlier. Here you need to fully justify answer. Assume A is diagonalizable]

3-17 ______ GvL 2.2-2.3; - Norms

ightharpoonup Assume we have r nonzero singular values (with $r < \min\{m, n\}$):

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

- ➤ Then:
- $ullet \|A\|_2 = \sigma_1$ $ullet \|A\|_F = \left[\sum_{i=1}^r \sigma_i^2
 ight]^{1/2}$
- More generally: Schatten p-norm (p > 1) defined by

$$\|A\|_{*,p} = \left[\sum_{i=1}^r \sigma_i^p
ight]^{1/p}$$

- ightharpoonup Note: $\|A\|_{*,p}$ = p-norm of vector $[\sigma_1;\sigma_2;\cdots;\sigma_r]$
- ▶ In particular: $\|A\|_{*,1} = \sum \sigma_i$ is called the nuclear norm and is denoted by $\|A\|_*$. (Common in machine learning).

Singular values and matrix norms

- ightharpoonup Let $A \in \mathbb{R}^{m imes n}$ or $A \in \mathbb{C}^{m imes n}$

Let
$$\left\{egin{array}{l} \sigma_i = \sqrt{\lambda_i(A^HA)} \ i=1,\cdots,n \ ext{ if } n \leq m \ \sigma_i = \sqrt{\lambda_i(AA^H)} \ i=1,\cdots,m \ ext{ if } m < n \end{array}
ight.$$

- ightharpoonup The σ_i 's are called singular values of A.
- \triangleright Note: a total of $\min(m, n)$ singular values.
- \blacktriangleright Always sorted decreasingly: $\sigma_1 > \sigma_2 > \sigma_3 > \cdots \sigma_k > \cdots$
- ➤ We will see a lot more on singular values later

GvL 2.2-2.3; — Norms

A few properties of the 2-norm and the F-norm

- ▶ Let $A = uv^T$. Then $||A||_2 = ||u||_2 ||v||_2$
- ✓ 18 Prove this result

For any $A\in\mathbb{C}^{m\times n}$ and unitary matrix $Q\in\mathbb{C}^{m\times m}$ we have $\|QA\|_2=\|A\|_2;\quad \|QA\|_F=\|A\|_F.$

Show that the result is true for any orthogonal matrix Q (Q has orthonomal columns), i.e., when $Q \in \mathbb{C}^{p \times m}$ with p > m

Let $Q \in \mathbb{C}^{n \times n}$, unitary. Do we have $\|AQ\|_2 = \|A\|_2$? $\|AQ\|_F = \|A\|_F$? What if $Q \in \mathbb{C}^{n \times p}$, with p < n (and $Q^HQ = I$)?