
SOLVING LINEAR SYSTEMS OF EQUATIONS

• Quick background on linear systems

• The Gaussian elimination algorithm (review)

• The LU factorization

• Gaussian Elimination with pivoting – permutation matrices.

• Case of banded systems

4-1

Background: Linear systems

The Problem: A is an n × n matrix, and b a vector of Rn. Find x such that:

Ax = b

➤ x is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:




2x1 + 4x2 + 4x3 = 6

x1 + 5x2 + 6x3 = 4

x1 + 3x2 + x3 = 8

or



2 4 4

1 5 6

1 3 1






x1

x2

x3


 =



6

4

8




✍1 Solution of above system ?

4-2 GvL 3.{1,3,5} – Systems

4-2➤ Standard mathematical solution by Cramer’s rule:

xi = det(Ai)/ det(A)

Ai = matrix obtained by replacing i-th column by b.

➤ Note: This formula is useless in practice beyond n = 3 or n = 4.

Three situations:

1. The matrix A is nonsingular. There is a unique solution given by x = A−1b.

2. The matrix A is singular and b ∈ Ran(A). There are infinitely many solutions.

3. The matrix A is singular and b /∈ Ran(A). There are no solutions.

4-3 GvL 3.{1,3,5} – Systems

4-3

Example: (1) Let A =

(
2 0

0 4

)
b =

(
1

8

)
. A is nonsingular ➤ a unique

solution x =

(
0.5

2

)
.

Example: (2) Case where A is singular & b ∈ Ran(A):

A =

(
2 0

0 0

)
, b =

(
1

0

)
.

➤ infinitely many solutions: x(α) =

(
0.5

α

)
∀ α.

Example: (3) Let A same as above, but b =

(
1

1

)
.

➤ No solutions since 2nd equation cannot be satisfied
4-4 GvL 3.{1,3,5} – Systems

4-4

Background. Triangular linear systems

Example: 

2 4 4

0 5 −2

0 0 2






x1

x2

x3


 =



2

1

4




➤ One equation can be trivially solved: the last one. x3 = 2

➤ x3 is known we can now solve the 2nd equation:

5x2 − 2x3 = 1 → 5x2 − 2 × 2 = 1 → x2 = 1

➤ Finally x1 can be determined similarly:

2x1 + 4x2 + 4x3 = 2 → ... → x1 = −5

4-5 GvL 3.{1,3,5} – Systems

4-5

ALGORITHM : 1 Back-Substitution algorithm

For i = n : −1 : 1 do:
t := bi
For j = i + 1 : n do 


t := bi − (ai,i+1:n, xi+1:n)

= bi − an inner product
t := t − aijxj

End
xi = t/aii

End

➤ We must require that each aii ̸= 0

➤ Operation count?

4-6 GvL 3.{1,3,5} – Systems

4-6Column version of back-substitution

Back-Substitution algorithm. Column version

For j = n : −1 : 1 do:
xj = bj/ajj

For i = 1 : j − 1 do
bi := bi − xj ∗ aij

End
End

✍2 Justify the above algorithm [Show that it does indeed compute the solution]

➤ Analogous algorithms for lower triangular systems.

4-7 GvL 3.{1,3,5} – Systems

4-7

Background: Gaussian Elimination

➤ Back to arbitrary linear systems.

Principle of the method: Since triangular systems are easy to solve, we will
transform a linear system into one that is triangular. Main operation: combine
rows so that zeros appear in the required locations to make the system
triangular.

Notation: use a Tableau:





2x1 + 4x2 + 4x3 = 2

x1 + 3x2 + 1x3 = 1

x1 + 5x2 + 6x3 = −6

tableau:
2 4 4 2

1 3 1 1

1 5 6 −6

➤ Main operation used: scaling and adding rows.
4-8 GvL 3.{1,3,5} – Systems

4-8

Gaussian Elimination (cont.)

➤ Step 1 transforms
2 4 4 2

1 3 1 1

1 5 6 −6

into:
x x x x

0 x x x

0 x x x

row2 := row2 − 1
2
× row1: row3 := row3 − 1

2
× row1:

2 4 4 2

0 1 −1 0

1 5 6 −6

2 4 4 2

0 1 −1 0

0 3 4 −7

➤ Equivalent to
1 0 0

−1
2

1 0

−1
2

0 1

×
2 4 4 2

1 3 1 1

1 5 6 −6

=

2 4 4 2

0 1 −1 0

0 3 4 −7

4-9 GvL 3.{1,3,5} – Systems

4-9

➤ Step 2 must transform:
2 4 4 2

0 1 −1 0

0 3 4 −7

into:
x x x x

0 x x x

0 0 x x

row3 := row3 − 3 × row2 : →
2 4 4 2

0 1 −1 0

0 0 7 −7

➤ Equivalent to
1 0 0

0 1 0

0 −3 1

×
2 4 4 2

0 1 −1 0

0 3 4 −7

=

2 4 4 2

0 1 −1 0

0 0 7 −7

➤ Triangular system ➤ Solve.

4-10 GvL 3.{1,3,5} – Systems

4-10Gaussian Elimination in a picture

piv = a(i,k)/a(k,k)

row(i):=row(i) − piv*row(k)

For i=k+1:n Do:

Row k

Row i

A

Pivot column

a(k,k)

piv = a(i,k)/a(k,k)

4-11 GvL 3.{1,3,5} – Systems

4-11

ALGORITHM : 2 Gaussian Elimination

1. For k = 1 : n − 1 Do:
2. For i = k + 1 : n Do:
3. piv := aik/akk

4. For j := k + 1 : n + 1 Do :
5. aij := aij − piv ∗ akj

6. End
6. End
7. End

➤ Operation count:

T =
n−1∑

k=1

n∑

i=k+1

[1 +
n+1∑

j=k+1

2] =
n−1∑

k=1

n∑

i=k+1

(2(n − k) + 3) = ...

✍3 Complete the above calculation. Order of the cost?
4-12 GvL 3.{1,3,5} – Systems

4-12

The LU factorization

➤ Now ignore the right-hand side and consider only A

Observation: Gaussian elimination is equivalent to n − 1 successive
Gaussian transformations, i.e., multiplications with matrices of the form Mk =

I − v(k)eTk , where the first k components of v(k) equal zero.

A1 = M1A0 with A0 ≡ A

A2 = M2A1 = M2(M1A0)

A3 = M3A2 = M3(M2M1A0)

· · · = · · ·
An−1 = Mn−1 · · ·M1A0 →

U = [Mn−1 · · ·M1]A

4-13 GvL 3.{1,3,5} – Systems

4-13

A = [Mn−1Mn−2...M1]
−1

︸ ︷︷ ︸
L

U ≡ LU

LU decomposition : A = LU , where L is lower triangular with ones on diagonal
(’Unit lower triang.), and U is upper triangular = the last matrix obtained in the
process = (An−1).

➤ Easy to get U . How do we get L? Can show:

The L factor is a lower triangular matrix with ones on the diagonal. Column k of
L, contains the multipliers lik used in the k-th step of Gaussian elimination.

➤ There is an ‘algorithmic’ approach to understanding the LU factorization [see
supplemental notes]

4-14 GvL 3.{1,3,5} – Systems

4-14A matrix A has an LU decomposition iff

det(A(1 : k, 1 : k)) ̸= 0 for k = 1, · · · , n − 1.

In this case: detA = det(U) =
n∏

i=1

uii

If, in addition, A is nonsingular, then the LU factorization is unique.

✍4 Practical use: Show how to use the LU factorization to solve linear systems with
the same matrix A and different b’s.

✍5 LU factorization of the matrix A =



2 4 4

1 5 6

1 3 1


? ✍6 Determinant of A?

✍7 True or false: “Computing the LU factorization of matrix A involves more
arithmetic operations than solving a linear system Ax = b by Gaussian elimination”.

4-15 GvL 3.{1,3,5} – Systems

4-15

Gaussian Elimination: Partial Pivoting

Consider again GE
for the system:





2x1 + 2x2 + 4x3 = 2

x1 + x2 + x3 = 1

x1 + 4x2 + 6x3 = −5

Or:
2 2 4 2

1 1 1 1

1 4 6 −5

➤ row2 := row2 − 1
2
× row1: ➤ row3 := row3 − 1

2
× row1:

2 2 4 2

0 0 −1 0

1 4 6 −5

2 2 4 2

0 0 −1 0

0 3 4 −6

➤ Pivot a22 is zero. Solution : permute
rows 2 and 3:

2 2 4 2

0 3 4 −6

0 0 −1 0

4-16 GvL 3.{1,3,5} – Systems

4-16

Gaussian Elimination with Partial Pivoting

Partial Pivoting

➤ General step k shown on the right −→
➤ Exchange row k with row l where

|alk| = maxi=k,...,n |aik|
➤ Do this at each step

➤ Yields a more ‘stable’ algorithm.

Largest a ik

Per
m

ute
 ro

ws

a
kk

Row k

✍8 The matlab script gaussp will be provided. Explore it from the angle of an actual
implementation in a language like C. Is it necessary to ‘physically’ move the rows?
(moving data around is not free).

4-17 GvL 3.{1,3,5} – Systems

4-17

Pivoting and permutation matrices

➤ A permutation matrix is a matrix obtained from the identity matrix by permuting its
rows

➤ For example for the permutation π = {3, 1, 4, 2} we obtain

P =




0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0




➤ Important observation: the matrix PA is obtained from A by permuting its rows
with the permutation π

(PA)i,: = Aπ(i),:

4-18 GvL 3.{1,3,5} – Systems

4-18✍9 What is the matrix PA when

P =




0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


 A =




1 2 3 4

5 6 7 8

9 0 −1 2

−3 4 −5 6


 ?

➤ Any permutation matrix is the product of interchange permutations, which only
swap two rows of I.

➤ Notation: Eij = Identity with rows i and j swapped

4-19 GvL 3.{1,3,5} – Systems

4-19

Example: To obtain π = {3, 1, 4, 2} from π = {1, 2, 3, 4} – we need to
swap π(2) ↔ π(3) then π(3) ↔ π(4) and finally π(1) ↔ π(2). Hence:

P =




0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0


 = E1,2 × E3,4 × E2,3

✍10 In the previous example where

>> A = [1 2 3 4; 5 6 7 8; 9 0 -1 2 ; -3 4 -5 6]

Matlab gives det(A) = −896. What is det(PA)?

4-20 GvL 3.{1,3,5} – Systems

4-20

Obtaining the LU factorization with pivoting

➤ The main result is simple (though cumbersome to prove)

We end up with the factorization

PA = LU

where

P is the permutation matrix corresponding to the accumulated swaps.

U is the last upper triangular matrix obtained

L is the same matrix of multipliers as before, *but* the rows are swapped when
those of the (evolving) U are.

➤ Best explained with examples.

4-21 GvL 3.{1,3,5} – Systems

4-21

Special case of banded matrices

➤ Banded matrices arise in many applications

➤ A has upper bandwidth q if aij = 0 for j − i > q

➤ A has lower bandwidth p if aij = 0 for i − j > p

✍11 Explain how GE would work on a banded system
(you want to avoid operations involving zeros) –
Hint: see picture

➤ Simplest case: tridiagonal ➤ p = q = 1.

4-22 GvL 3.{1,3,5} – Systems

4-22➤ First observation: Gaussian elimination (no pivoting) preserves the initial banded
form. Consider first step of Gaussian elimination:

2. For i = 2 : n Do:
3. ai1 := ai1/a11 (pivots)
4. For j := 2 : n Do :
5. aij := aij − ai1 ∗ a1j

6. End
7. End

➤ If A has upper bandwidth q and lower bandwidth p then so is the resulting [L/U]

matrix. ➤ Band form is preserved (induction)

✍12 Operation count?

4-23 GvL 3.{1,3,5} – Systems

4-23

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with
partial pivoting is used, then the resulting U has upper bandwidth p + q. L has at
most p + 1 nonzero elements per column (bandedness is lost).

➤ Simplest case: tridiagonal ➤ p = q = 1.

Example:

A =




1 1 0 0 0

2 1 1 0 0

0 2 1 1 0

0 0 2 1 1

0 0 0 2 1




4-24 GvL 3.{1,3,5} – Systems

4-24

