FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

« Brief review of floating point arithmetic
* Model of floating point arithmetic

* Notation, backward and forward errors

Roundoff errors and floating-point arithmetic

» The basic problem: The set A of all possible representable numbers on a given
machine is finite - but we would like to use this set to perform standard arithmetic

operations (+,%,-,/) on an infinite set. The usual algebra rules are no longer satisfied
since results of operations are rounded.

» Basic algebra breaks down in floating point arithmetic.

Example: |In floating point arithmetic.

a+(b+c)!= (a+b)+c

Matlab experiment: For 10,000 random numbers find number of instances when
the above is true. Same thing for the multiplication..

5-2 GvL 2.7 — Float
Floating point representation: Machine precision - machine epsilon
Real numbers are represented in two parts: A mantissa (significand) and an expo- > Notation : fl(x) = closest floating point representation of real number x
nent. If the representation is in the base 3 then: (rounding’)
z = E(didy - dy) » When a number x is very small, there is a point when 1 + x == 1 in a machine

» .dyds - - - dy is a fraction in the base-3 representation (Generally the form is nor-
malized in that d; # 0), and e is an integer

» Often, more convenient to rewrite the above as:

x=x(m/B) x B¢ =+m x B!

» Mantissa m is an integer with 0 < m < B! — 1.

5-3 GvL 2.7 — Float

sense. The computer no longer makes a difference between 1 and 1 + .

Machine epsilon: | The smallest number e such that 1+ ¢ is a float that is different

from one, is called machine epsilon. Denoted by macheps or eps, it represents the
distance from 1 to the next larger floating point number.

» With previous representation, eps is equal to 3~ ¢—1.

5.4 GvL 2.7 — Float

Example: |In IEEE standard double precision, 3 = 2, and t = 53 (includes
‘hidden bit’). Therefore eps = 2752

Unit Round-off = A real number « can be approximated by a floating number fI(x)
with relative error no larger thanu = 78-(=1,

» u is called Unit Round-off.

» In fact can easily show:
fl(z) = z(1 + &) with |§] < u
Matlab experiment: find the machine epsilon on your computer.
» What conditions/ rules should be satisfied by floating point arithmetic? The IEEE

standard is a set of standards adopted by many CPU manufacturers.

5-5 GvL 2.7 — Float

Among IEEE rules:

Rule 1. fl(x) =x(1+¢€), where |e|]<u

for ® =

Rule 2. Ffllz®y) = (x®y)(1+ €r), where [eg] < u e en)

Rule 3. | For +, % operations: Fla®b) = fl(bO a)

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly gener-
ated numbers a;, b;.

5-6 GvL 2.7 — Float

Example: | Consider the sum of 3 numbers: y = a + b + c.
» Done as fl(a + b+ ¢) = fl(fl(a + b) + ¢)

fll@a+b) = (a+b)(1+€)
flla+b+c) = [(a+b)(1+€1)+c](1+e€)

=a(l+e€)(l+e)+bl+e)l+e)+c(l+e)

» Remark on order of the sum. If y; = fI(fl(a + b) + ¢):

yl = [(a+b+c)+ (a+b)e)](1+e)

a-+b
=(a+b+c) 1+7a+b—|—c€1(1+62)+62

So disregarding the high order term e; e

FU(fi(a+b)+¢c) = (a+b+c)(1+ €)

. a+b
Wlth1+01:1+02: (1+61)(1+62)and1+03: (1+62) €3 = mel'i‘eZ
» For a longer sum we would have something like:
1+6;=00+e)d+e)(--)1+ eny)
We will study such products shortly
5-7 GvL 2.7 — Float 5-8 GvL 2.7 — Float

» If we redid the computation as y» = fl(a + fI(b + ¢)) we would find

The absolute value notation

» For a given vector z, |x| is the vector with components |z;|, i.e., || is the
component-wise absolute value of x.
flla+ fb+e) = (a+b+e)(1+e) ponem ’ ;
" b+ c
e b+ Lt + e > Similarly for matrices: |A| = {|aij| }iz1,...;m; j=1,...n
» The error is amplified by the factor (a + b)/y in the first case and (b 4 ¢)/y in > An obvious result: The basic inequality
the second case.
. , , |fl(as;) — aij| < u |a]
» In order to sum n numbers accurately, it is better to start with small numbers first.
[However, sorting before adding is not worth it.]
> But watch out if the numbers have mixed signs! translates into |f1(A) — A[< u |A]
» A< Bmeansa;; < bjjforalll<i:<m; 1<j53<n
5-9 GvL 2.7 — Float 5-10 GvL 2.7 — Float
Exact
Backward and forward errors y=F(x)
A
» Assume the approximation g to y = F(x) is computed by some algorithm with X Co’mpu:‘.@
arithmetic precision €. Possible analysis: find an upper bound for the Forward error ‘ RN ' Forward
Backward | . | Error
I .
lAyl = lly - 9l e SELLEYY
y
» Called Forward error analysis. This is not always easy. X+AX FcrAX)

Find smallest equivalent perturbation on initial data (x)

Alternative question: R
that produces (exactly) the result g:

Flx + Az) =9

» The smallest value of ||Az|| s.t. above is satisfied is called the backward error.
An analysis to find this eror is called Backward error analysis.

5-11 GvL 2.7 — Float

Formal definition | n(9) = min{e|y = F(z + Ax) |Az| < €}

Note: In practice backward errors may be more meaningful than forward errors: if
initial data is accurate only to 4 digits say, then my algorithm for computing = need
not be required to produce a backward error of less then 10719 for example. A
backward error of order 10~ is sufficient.

5-12 GvL 2.7 — Float

Error Analysis: Inner product Example: |Previous sum of numbers can be written

» The following lemma helps with analysis of inner products. flla+b+e¢) = fi(fl(a+b) +c)
= [(a+b)(1+e1) +] (1+€)
Lemma: 1f |6 <u and nu < 1 then = a(l +e€)(1+€)+b(1l+e)(l+e)+c(l+e)
" nu = a(l + 01) + b(]. + 92) + C(l + 03)
I, (1+6;) =1+ 6, where [6,] < 1—nu = exact sum of slightly perturbed inputs,
h 1o, tisfy [60;| < ~,, (h =2
» Common notation ~,, = 1:%2 where all 6;s satisfy |6;] < . (here n)

.) . » Backward error result (output is exact sum of perturbed input)
Prove the lemma [Hint: use induction]

» Alternatively, can write ‘forward’ bound:
[fl(a+b+¢) = (a+b+c) < |ab]| + [b6:] + |cb].

(bound on | output - exact sum |)

5-13 GvL 2.7 — Float 5-14 GvL 2.7 — Float

Analysis of inner products (cont.) Expand: 55 = @1y (1+m)(1+ €2)(1 + €5)

+x2y2(1 + m2) (1 + €2)(1 + €3)

Consider sn=fl(x1*y1 +Ta* Y2+ -+ + Tp * Yn)
+z3y3(1 + m3) (1 + €3)

» In what follows n;’s come from *, €;'s come from + » Induction would show that [with convention that e; = 0]

» They satisfy: |n;| < u and |¢;| < u.

» The inner product s,, is computed as: Sp = Z zyi (1 + ;) H(l + €;)

i=1 Jj=t

1. s1 = fl(z1y1) = (z1y1) (1 + m)

2. 53 = fl(s1 + fl(x2y2)) = fl(s1 + x2y2(1 + 1m2)) Q: How many terms in the coefficient of x;y; do we have?
= (@1 (1 +m) + 2202(1+ 72)) (1 4 €2) eWheni>1:1+(n—i+1)=n—i+?2
= 21y1(L+ M) (1 + €2) + 22y2(1 + 1m2) (1 + €2) s e Wheni = 1: n (since e; = 0 does not count)

3. 53 = fl(s2 + fl(x3y3)) = fl(s2 + x3y3(1 + n3)) > Bottom line: always < n.

= (82 + 23y3(1 + n3)) (1 + €3)

5-15 GvL 2.7 — Float 5-16 GvL 2.7 — Float

» For each of these products

X+m) [[-(1+€)=1+6; with [|6;] <~, so

Sn =)iy ziyi(1 + 0;) with [0;] <, or

[FLOCE way) = 20wy + Sy @il with (6] < 7, |

» This leads to the final result (forward form)

Jl (Z fﬂzyz> =Yz
iz i=1

<Y Y |zl |yl
=1
» or (backward form)

Sl (Z iUz?Jz) = szyz(l +6;) with 10;] < v,
i—1

i=1

Show for any z,y, there | fl(zTy) = (z + Az)Ty, with |Az| < y,|z]
exist Az, Ay such that: flz"y) = 2" (y + Ay), with |Ay| < yaly|

Let A € R™" ¢ _
R", y = Az. Show that fU¥) =(A+AAd)z, with [AA]< v.[A]

there exist a matrix A A s.t.

From the above derive a result about a column of the product of two matrices
A and B. Does a similar result hold for the product AB as a whole?

Assume you use single precision for which you have u = 2. x 107%. What is
the largest n for which we have ~v,, < 0.01? Any conclusions for the use of single
precision arithmetic?

What does the main result on inner products imply for the case when y = x?
[Contrast the relative accuracy you get in this case vs. the general case when y # x]

5-17 GvL 2.7 — Float 5-18 GvL 2.7 — Float
Recap: Main results on inner products: Error Analysis for linear systems: Triangular systems
» Recall:

» Forward error expression: |fl(x"y) — 2"y| < v lz|" |yl

» Consequence for matrix products:

I(AB) — AB| < v, |A||B
(A € R™*", B € R"*P) |fI(AB) | < |AllB]

» Backward error

o fUz"y) = [z (1 + do)]" [y * (1 + dy)]
expression:

where ||dal|oo < n, O = x, y. Equality valid even if one of the d, d,, absent

5-19 GvL 2.7 — Float

ALGORITHM : 1. Back-Substitution algorithm

Fort =mn:—1:1do:
t:= bl
Foryj=14+1:ndo
} t:=t— (ai,i+1:n7 wi+1:n)

t:=1— a;z;
. = t — an inner product

End
€L; = t/aii
End

» Requirement: each a;; must be # 0.

» Round-off error (use previous results for (-, -))?
5-20 GvL 2.7 — Float

» Backward error analysis: £ = computed x solves a slightly perturbed system

The computed solution & of the triangular system Ux = b computed by the back-
substitution algorithm satisfies:

(U+E)x=0
with
|E]| <nu |U|+ O(u?)

» Remarkable result: Backward error |E| is small relative to |U| - unless n is huge

» |t is said that triangular solve is “backward stable”.

5-21 GvL 2.7 — Float

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then
the computed factors L and U satisfy

LU=A+H

with [H| < 3(n—1) x u (4] +|L]10]) + O@?)

» Solution & computed via Liy=bandUz = giss. t.

(A+m@:bmwmgng@m44MMﬁD+my)

5-22 GvL 2.7 — Float

» “Backward” error estimate.

> |L| and |U]| are not known in advance — they can be large.

» What if partial pivoting is used?

» Equivalent to standard LU on matrix P A. Permutations introduce no errors
> |L| is small since |1;;| < 1. Therefore, only U is “uncertain”

» In practice partial pivoting is “stable” —i.e., highly unlikely to have a very large U.

5-23 GvL 2.7 — Float

Supplemental notes: Floating Point Arithmetic

[For information only — Will *not* be covered in class]

In most computing systems, real numbers are
represented in two parts: A mantissa and an
exponent. In base 3:

r = :I:(.dldz s dm)g,@e

» .dids - - - d,, is a fraction in the base-3 representation
» e is an integer - can be negative, positive or zero.

» Generally the form is normalized in that d; # 0.

Example: | In base 10 (for illustration only - no base 10 computers)

1. 1000.12345 can be written as 0.100012345,, x 10*

2. 0.000812345 can be written as 0.812345;, x 10—2
5-24 GvL 2.7 — FloatSuppl

» Problem with floating point arithmetic: we have to live with limited precision.

Example: | Assume that we have only 5 digits of accuray in the mantissa and 2
digits for the exponent (excluding sign).

EACAEAEAEAINEN

» Try to add 1000.2 = .10002e+03 and 1.07 = .10700e+01:

1000.2 =|.1[0o[0[0[2]0[4]; 1.07=].1]0|7[0[0]0]1]

First task: | align decimal points. The one with smallest exponent will be (inter-
nally) rewritten so its exponent matches the largest one:

1.07 = 0.000107 x 10*

Second task: | add mantissas: +

oo o

1
.0
]

oo o
oo o
_L_Lo
NDIO N

7
7

Third task: | round result. Result has 6 digits - can use only 5 so we can:
» Chop result: [.1]/0[0[1]2] ; or Round result:|.1/0[0]1]3] ;
Fourth task: I Normalize result if needed (not needed here)

Result with rounding: |.1/0[0[1/3]0|4

’

Redo the same thing with 7000.2 + 4000.3 or 6999.2 + 4000.3.

5-26 GvL 2.7 — FloatSuppl

The IEEE standard

32 bit | (Single precision) :

| 8hits | <« 23bits — |

+
g N—_——
& exponent mantissa

» Number is scaled so it is in the form 1.dids...d23 X 2¢ - but leading one is not
represented.

» e is between -126 and 127.

» [Here is why: Internally, exponent e is represented in “biased” form: what is
stored is actually ¢ = e 4+ 127 — so the value c of exponent field is between 1 and
254. The values ¢ = 0 and ¢ = 255 are for special cases (0 and oco)]

5-27 GvL 2.7 — FloatSuppl

64 bit | (Double precision) :

|+| 11bits | + 52bits —
S S :
& exponent mantissa

» Bias of 1023 so if e is the actual exponent the content of the exponent field is
c=e+ 1023

» Largest exponent: 1023; Smallest = -1022.
» ¢ = 0 and ¢ = 2047 (all ones) are again for 0 and oo

» Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one
hidden).

» In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

5-28 GvL 2.7 — FloatSuppl

Take the number 1.0 and see what will happen if you add 1/2,1/4,,27%,
Do not forget the hidden bit!

Hidden bit ~ (Not represented)
Expon. | < 52bits —
e 1)/1/0/0|0/0|0|0|0|0 0|0
e 1)/0/1/0|0/0|0|0|0|0 0|0
e 1/0/0/1|0/0|0|0|0|0 0|0

e 1/0/0/0/0/0/0|0|0/0|0]1
1)/0/0/0|0/0|0|0|0|0 0|0

(Note: The ’e’ part has 12 bits and includes the sign)
» Conclusion
Ffl(1 +2752) # Lbut: fI(1+2753) == 11l

5-29 GvL 2.7 — FloatSuppl

Special Values

» Exponent field = 00000000000 (smallest possible value)
No hidden bit. All bits == 0 means exactly zero.

» Allow for unnormalized numbers,
leading to gradual underflow.

» Exponent field = 11111111111 (largest possible value)
Number represented is "Inf” *-Inf” or "NaN”.

5-30 GvL 2.7 — FloatSuppl

Recent trend: GPUs

» Graphics Processor Units: Very fast boards attached to CPUs for heavy-duty
computing

> e.g., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops = 10'2 operations per
second) for certain types of computations.

» Single precision much faster than double ...

» ... and there is also “half-precision” which is = 16 times faster than standard 64bit
arithmetic

» Used primarily for Deep-learning

5-31 GvL 2.7 — FloatSuppl

