$$\begin{array}{c|c} \swarrow & 1 \\ \swarrow & 1 \\ \blacksquare & 1 \\ 0 & 10 & 25 \end{array} \begin{pmatrix} x_n \\ x_d \\ x_q \end{pmatrix} = \begin{pmatrix} 145 \\ 12 \\ 125 \end{pmatrix}$$

Solution: You will find: $x_n = 4$, $x_d = 5$, $x_q = 3$.

Solution: $(A^T)^T = ??$

Solution: $(A^H)^H = ??$ **Solution:** $(A^H)^H = A$

 $(ABC)^T = ??$

Solution: $(ABC)^T = C^T B^T A^T$

Z True/False: (AB)C = A(BC) Solution: \rightarrow True

✓ $\square 9$ True/False: AB = BA Solution: \rightarrow false

[▲]10 True/False: $AA^T = A^T A$ Solution: \rightarrow false in general

▲ 12 Complexity? [number of multiplications and additions for matrix multiply]

Solution: Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product AB requires 2mnp operations (there are mp entries in all and each of them requires 2n operations).

Multiplication when B has one column (p = 1)?

Solution: In the first: $C_{:,j}$ the j=th column of C is a linear combination of the columns of A. This is the usual matrix-vector product.

In the second: $C_{i,:}$ is just a number which is the inner product of the *i*th row of *A* with the column *B*.

⁽¹⁴⁾ Characterize the matrices AA^T and A^TA when A is of dimension $n \times 1$.

Solution: When $A \in \mathbb{R}^{n \times 1}$ then AA^T is a rank-one $n \times n$ matrix and A^TA is a scalar: the inner product of the column A with itself.

15 C16 Show that $A \in \mathbb{R}^{m \times n}$ is of rank one iff [if and only if] there exist two nonzero vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

 $A = uv^T$.

What are the eigenvalues and eigenvectors of A?

Solution: (a)

 \leftarrow First we show that: When both u and v are nonzero vectors then the rank of a matrix of the matrix

 $A = uv^T$ is one. The range of A is the set of all vectors of the form

$$y = Ax = uv^T x = (v^T x)u$$

since u is a nonzero vector, and not all vectors $v^T x$ are zero (because $v \neq 0$) then this space is of dimension 1.

 \rightarrow Next we show that: If A is of rank one than there exist nonzero vectors u, v such that $A = uv^T$. If A is of rank one, then $Ran(A) = Span\{u\}$ for some nonzero vector u. So for every vector x, the vector Ax is a multiple of u. Let e_1, e_2, \dots, e_n the vectors of the canonical basis of \mathbb{R}^n and let $\nu_1, \nu_2, \dots, \nu_n$ the scalars such that $Ae_i = \nu_i u$. Define $v = [\nu_1, \nu_2, \dots, \nu_n]^T$. Then $A = uv^T$ because the matrices A and uv^T have the same columns. (Note that the j-th column of A is the vector Ae_j). In addition, $v \neq 0$ otherwise A == 0 which would be a contradiction because rank(A) = 1.

(b) Eigenvalues /vectors

Write $Ax = \lambda x$ then notice that this means $(v^T x)u = \lambda x$ so either $v^T x = 0$ and $\lambda = 0$ or x = u and

 $\lambda = v^T u$. Two eigenvalues: 0 and $v^T x$...

▲17 Is it true that

$$\operatorname{rank}(A) = \operatorname{rank}(\bar{A}) = \operatorname{rank}(A^T) = \operatorname{rank}(A^H)$$
?

Solution:

The answer is yes and it follows from the fact that the ranks of A and A^T are the same and the ranks of A and \bar{A} are also the same.

It is known that $rank(A) = rank(A^T)$. We now compare the ranks of A and \overline{A} (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly independent then so is its conjugate. [convince yourself of this by looking at material from 2033]. If A has rank r and for example its first r columns are the basis of the range, the the same r columns of \overline{A} are also linearly independent. So $rank(\overline{A}) \ge rank(A)$. Now you can use a similar argument to show that $rank(A) \ge rank(\overline{A})$. Therefore the ranks are the same.

 \swarrow 21 Eigenvalues of two similar matrices A and B are the same. What about eigenvectors?

Solution: If $Au = \lambda u$ then $XBX^{-1}u = \lambda u \to B(X^{-1}u) = \lambda(X^{-1}u) \to \lambda$ is an eigenvalue of B with eigenvector $X^{-1}u$ (note that the vector $X^{-1}u$ cannot be equal to zero because $u \neq 0$.)

22 Given a polynomial p(t) how would you define p(A)?

Solution: If $p(t) = \alpha_0 + \alpha_1 t + \alpha_2 t^2 + \cdots + \alpha_k t^k$ then

$$p(A) = lpha_0 I + lpha_1 A + lpha_2 A^2 + \dots + lpha_k A^k$$

where

$$A^{j} = \underbrace{A \times A \times \cdots \times A}_{j \text{ times}}$$

Given a function f(t) (e.g., e^t) how would you define f(A)? [You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$f(A) = f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 \cdots rac{f^{(k)}(0)}{k!}A^k + \cdots$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful. We will revisit this in next set.

⁽²⁴⁾ If A is nonsingular what are the eigenvalues/eigenvectors of A^{-1} ?

Solution: Assume that $Au = \lambda u$. Multiply both sides by the inverse of A: $u = \lambda A^{-1}u$ - then by the

inverse of λ : $\lambda^{-1}u = A^{-1}u$. Therefore, $1/\lambda$ is an eigenvalue and u is an associated eigenvector.

⁽²⁵⁾ What are the eigenvalues/eigenvectors of A^k for a given integer power k?

Solution: Assume that $Au = \lambda u$. Multiply both sides by A and repeat k times. You will get $A^k u = \lambda^k u$. Therefore, λ^k is an eigenvalue of A^k and u is an associated eigenvector.

^{\not} 26 What are the eigenvalues/eigenvectors of p(A) for a polynomial p?

Solution: Using the previous result you can show that $p(\lambda)$ is an eigenvalue of p(A) and u is an associated eigenvector.

⁽²⁷⁾ What are the eigenvalues/eigenvectors of f(A) for a function f? [Diagonalizable case]

Solution: This will require using the diagonalized form of A: $A = XDX^{-1}$. With this $f(A) = Xf(D)X^{-1}$. It becomes clear that the eigenvalues are the diagonal entries of f(D), i.e., the values $f(\lambda_i)$ for $i = 1, \dots, n$. As for the eigenvectors - recall that they are the columns of the X matrix in the

diagonalized form – And X is the same for A and f(A). So the eigenvectors are the same.

28 For two $n \times n$ matrices A and B are the eigenvalues of AB and BA the same?

Solution: We will show that if λ is an eigenvalue of AB then it is also an eigenvalue of BA. Assume that $ABu = \lambda u$ and multiply both sides by B. Then $BABu = \lambda Bu$ – which we write in the form: $BAv = \lambda v$ where v = Bu. In the situation when $v \neq 0$, we clearly see that λ is a nonzero eigenvalue of BA with the associated eigenvector v. We now deal with the case when v = 0. In this case, since $ABu = \lambda u$, and $u \neq 0$ we must have $\lambda = 0$. However, clearly $\lambda = 0$ is also an eigenvalue of BA because det(BA) = det(AB) = 0.

We can similarly show that any eigenvalue of BA are also eigenvalues of AB by interchanging the roles of A and B. This completes the proof

2 30 Trace, spectral radius, and determinant of
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$$
.

Solution: Trace is 2, determinant is -3. Eigenvalues are 3, -1 so $\rho(A) = 3$.

∠31 What is the inverse of a unitary (complex) or orthogonal (real) matrix?

Solution: If Q is unitary then $Q^{-1} = Q^H$.

✓ 32 What can you say about the diagonal entries of a skew-symmetric (real) matrix?

Solution: They must be equal to zero.

[▲]33 What can you say about the diagonal entries of a Hermitian (complex) matrix?

Solution: We must have $a_{ii} = \bar{a}_{ii}$. Therefore a_{ii} must be real.

[▲]34 What can you say about the diagonal entries of a skew-Hermitian (complex) matrix?

Solution: We must have $a_{ii} = -\bar{a}_{ii}$. Therefore a_{ii} must be purely imaginary.

^{▲35} Which matrices of the following type are also normal: real symmetric, real skew-symmetric, Hermi-

tian, skew-Hermitian, complex symmetric, complex skew-symmetric matrices.

Solution: Real symmetric, real skew-symmetric, Hermitian, skew-Hermitian matrices are normal. Complex symmetric, complex skew-symmetric matrices are not necessarily normal.

 \swarrow 39 What does the matrix-vector product Va represent?

Solution: If $a = [a_0, a_2, \cdots, a_n]$ and p(t) is the *n*-th degree polynomial:

 $p(t)=a_0+a_1t+a_2t^2+\cdots a_nt^n$

then Va is a vector whose components are the values $p(x_0), p(x_1), \cdots, p(x_n)$.

40 Interpret the solution of the linear system Va = y where a is the unknown. Sketch a 'fast' solution method based on this.

Solution: Given the previous exercise, the interpretation is that we are seeking a polynomial of degree n whose values at x_0, \dots, x_n are the components of the vector y, i.e., y_0, y_1, \dots, y_n . This is known as

polynomial interpolation (see csci 5302). The polynomial can be determined by, e.g., the Newton table in $O(n^2)$ operations.

Basics on matrices [Extracted from csci2033 notes]

▶ If A is an $m \times n$ matrix (m rows and n columns) –then the scalar entry in the *i*th row and *j*th column of A is denoted by a_{ij} and is called the (i, j)-entry of A.

 \blacktriangleright $a_{ij} == i$ th entry (from the top) of the *j*th column

Each column of A is a list of m real numbers, which identifies a vector in \mathbb{R}^m called a column vector

The columns $a_{:1}...,a_{:n}$ - denoted by a_1,a_2,\cdots,a_n so $A=[a_1,a_2,\cdots,a_n]$

> The diagonal entries in an $m \times n$ matrix A are $a_{11}, a_{22}, a_{33}, ...,$ and they form the main diagonal of A.

A diagonal matrix is a matrix whose nondiagonal entries are zero

 \blacktriangleright The $n \times n$ identity matrix I_n Example:

$$I_3=egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Matrix Multiplication

- > When a matrix B multiplies a vector x, it transforms x into the vector Bx.
- > If this vector is then multiplied in turn by a matrix A, the resulting vector is A(Bx).

> Thus A(Bx) is produced from x by a composition of mappings—the linear transformations induced by B and A.

> Note: $x \rightarrow A(Bx)$ is a linear mapping (prove this).

Goal: to represent this composite mapping as a multiplication by a single matrix, call it *C* for now, so that

$$A(Bx) = Cx$$

Assume A is $m \times n$, B is $n \times p$, and x is in \mathbb{R}^p . Denote the columns of B by b_1, \dots, b_p and the entries in x by x_1, \dots, x_p . Then:

$$Bx = x_1b_1 + \dots + x_pb_p$$

> By the linearity of multiplication by A: $A(Bx) = A(x_1b_1) + \dots + A(x_pb_p)$ $= x_1Ab_1 + \dots + x_pAb_p$

> The vector A(Bx) is a linear combination of Ab_1, \dots, Ab_p , using the entries in x as weights.

In matrix notation, this linear combination is written as

 $A(Bx) = [Ab_1, Ab_2, \cdots Ab_p].x$

> Thus, multiplication by $[Ab_1, Ab_2, \cdots, Ab_p]$ transforms x into A(Bx).

 \succ Therefore the desired matrix C is the matrix

$$C = [Ab_1, Ab_2, \cdots, Ab_p]$$

Denoted by AB

Definition: If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \dots, b_p , then the product AB is the matrix whose p columns are Ab_1, \dots, Ab_p . That is:

$$AB=A[b_1,b_2,\cdots,b_p]=[Ab_1,Ab_2,\cdots,Ab_p]$$

Important to remember that :

Multiplication of matrices corresponds to composition of linear transformations.

Operation count: How many operations are required to perform product AB?

Compute AB when

$$A = egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B = egin{bmatrix} 0 & 2 & -1 \ 1 & 3 & -2 \end{bmatrix}$$

Compute AB when

$$A = \begin{bmatrix} 2 & -1 & 2 & 0 \\ 1 & -2 & 1 & 0 \\ 3 & -2 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & -2 & 2 \\ 2 & 1 & -2 \\ -1 & 3 & 2 \end{bmatrix}$$

 \bigtriangleup Can you compute AB when

$$A = egin{bmatrix} 2 & -1 \ 1 & 3 \end{bmatrix} \quad B = egin{bmatrix} 0 & 2 \ 1 & 3 \ -1 & 4 \end{bmatrix}?$$

1-19

> Recall what we did with matrix-vector product to compute a single entry of the vector Ax

> Can we do the same thing here? i.e., How can we compute the entry c_{ij} of the product AB without computing entire columns?

Do this to compute entry (2, 2) in the first example above.

Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?

Theorem Let A be an $m \times n$ matrix, and let B and C have sizes for which the indicated sums and products are defined.

- A(BC) = (AB)C (associative law of multiplication)
- A(B+C) = AB + AC (left distributive law)
- (B+C)A = BA + CA (right distributive law)
- $\alpha(AB) = (\alpha A)B = A(\alpha B)$ for any scalar α
- $I_m A = A I_n = A$ (product with identity)

If AB = AC then B = C ('simplification') : True-False?

If AB = 0 then either A = 0 or B = 0: True or False?

 $\triangle AB = BA$: True or false??

Square matrices. Matrix powers

- \blacktriangleright Important particular case when n=m so matrix is n imes n
- \blacktriangleright In this case if x is in \mathbb{R}^n then y = Ax is also in \mathbb{R}^n
- \blacktriangleright AA is also a square n imes n matrix and will be denoted by A^2

> More generally, the matrix A^k is the matrix which is the product of k copies of A:

$$A^1 = A;$$
 $A^2 = AA;$ \cdots $A^k = \underbrace{A \cdots A}_{k \text{ times}}$

For consistency define A^0 to be the identity: $A^0 = I_n$, $\swarrow A^l \times A^k = A^{l+k}$ – Also true when k or l is zero.

Transpose of a matrix

Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Theorem : Let A and B denote matrices whose sizes are appropriate for the following sums and products.

- $(A^T)^T = A$
- $\bullet \ (A+B)^T = A^T + B^T$
- $(\alpha A)^T = \alpha A^T$ for any scalar α
- $(AB)^T = B^T A^T$

More on matrix products

> Recall: Product of the matrix A by the vector x: $(a_j == j$ th column of A)

$$= lpha_1 a_1 + lpha_2 a_2 + \dots + lpha_n a_n$$

- x, y are vectors; y is the result of $A \times x$.
- $a_1, a_2, ..., a_n$ are the columns of A

• $\alpha_1, \alpha_2, ..., \alpha_n$ are the components of x [scalars]

• $\alpha_1 a_1$ is the first column of A multiplied by the scalar α_1 which is the first component of x.

• $\alpha_1 a_1 + \alpha_2 a_2 + \cdots + \alpha_n a_n$ is a linear combination of a_1, a_2, \cdots, a_n with weights $\alpha_1, \alpha_2, ..., \alpha_n$.

This is the 'column-wise' form of the 'matvec'

Example:
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad x = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \quad y = ?$$
Result:

$$y=-2 imesegin{bmatrix}1\0\end{bmatrix}+1 imesegin{bmatrix}2\-1\end{bmatrix}-3 imesegin{bmatrix}-1\3\end{bmatrix}=egin{bmatrix}3\-10\end{pmatrix}$$

 \blacktriangleright Can get *i*-th component of the result *y* without the others:

 $eta_i = lpha_1 a_{i1} + lpha_2 a_{i2} + \dots + lpha_n a_{in}$

Example: In the above example extract β_2

$$eta_2 = (-2) imes 0 + (1) imes (-1) + (-3) imes (3) = -10$$

- > Can compute $\beta_1, \beta_2, \cdots, \beta_m$ in this way.
- This is the 'row-wise' form of the 'matvec'

Matrix-Matrix product

► Recall:

> When A is $m \times n$, B is $n \times p$, the product AB of the matrices A and B is the $m \times p$ matrix defined as

$$AB = [Ab_1, Ab_2, \cdots, Ab_p]$$

where b_1, b_2, \cdots, b_p are the columns of B

► Each $Ab_j ==$ product of A by the j-th column of B. Matrix AB is in $\mathbb{R}^{m \times p}$

Can use what we know on matvecs to perform the product

1. Column form – In words: "The *j*-th column of AB is a linear combination of the columns of A, with weights $b_{1j}, b_{2j}, \dots, b_{nj}$ " (entries of *j*-th col. of B)

 $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \quad B = \begin{bmatrix} -2 & 1 \\ 1 & -2 \\ -3 & 2 \end{bmatrix} \quad AB = ?$ $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 \end{bmatrix}$

Result:

 $B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \end{bmatrix}$ $= \begin{bmatrix} 3 & -6 \\ -10 & 8 \end{bmatrix}$

First column has been computed before: it is equal to: $(-2)^*(\text{col. 1 of } A) + (1)^*(\text{col. 2 of } A) + (-3)^*(\text{col. 3 of } A)$

Second column is equal to: (1)*(col. 1 of A) + (-2)*(col. 2 of A) + (2)*(col. 3 of A) **2.** If we call C the matrix C = AB what is c_{ij} ? From above:

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{ik}b_{kj}+\cdots+a_{in}b_{nj}$$

- \blacktriangleright Fix j and run $i \longrightarrow$ column-wise form just seen
- **3.** Fix *i* and run $j \rightarrow$ row-wise form

Example: Get second row of *AB* in previous example.

$$c_{2j}=a_{21}b_{1j}+a_{22}b_{2j}+a_{23}b_{3j}, \ \ j=1,2$$

• Can be read as : $c_{2:} = a_{21}b_{1:} + a_{22}b_{2:} + a_{23}b_{3:}$, or in words:

row2 of C = a_{21} (row1 of B) + a_{22} (row2 of B) + a_{23} (row3 of B) = 0 (row1 of B) + (-1) (row2 of B) + (3) (row3 of B) = $[-10 \ 8]$