\&1 Solution of System $\left(\begin{array}{ccc}5 & 10 & 25 \\ 1 & 1 & 1 \\ 0 & 10 & 25\end{array}\right)\left(\begin{array}{l}x_{n} \\ x_{d} \\ x_{q}\end{array}\right)=\left(\begin{array}{c}145 \\ 12 \\ 125\end{array}\right)$
Solution: You will find: $x_{n}=4, \quad x_{d}=5, \quad x_{q}=3$.
\& 3 ($\left.A^{T}\right)^{T}=? ? \quad$ Solution: $\left(A^{T}\right)^{T}=A$
\& $4 B)^{T}=? ?$
Solution: $(A B)^{T}=B^{T} A^{T}$
*5 $\left(A^{H}\right)^{H}=? ?$
$A_{0}\left(A^{H}\right)^{T}=? ?$
($A B C)^{T}=?$?

Solution: $\left(A^{H}\right)^{H}=A$

Solution: $\left(A^{H}\right)^{T}=\bar{A}$
Solution: $(A B C)^{T}=C^{T} B^{T} A^{T}$
\star_{0} True/False: $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A} \quad$ Solution: \rightarrow false

The 10 True/False: $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}=\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} \quad$ Solution: \rightarrow false in general

12 Complexity? [number of multiplications and additions for matrix multiply]

Solution: Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then the product $\boldsymbol{A B}$ requires $2 \boldsymbol{m n p}$ operations (there are $\boldsymbol{m p}$ entries in all and each of them requires $2 \boldsymbol{n}$ operations). \square
\& 13 What happens to these 3 different approches to matrix-matrix multiplication when \boldsymbol{B} has one column $(p=1) ?$

Solution: In the first: $\boldsymbol{C}_{:, j}$ the $\boldsymbol{j}=$ th column of \boldsymbol{C} is a linear combination of the columns of \boldsymbol{A}. This is the usual matrix-vector product.

In the second: $\boldsymbol{C}_{i,:}$ is just a number which is the inner product of the \boldsymbol{i} th row of \boldsymbol{A} with the column \boldsymbol{B}.

The 3rd formula will give the exact same expression as the first. \square
© 14 Characterize the matrices $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$ and $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ when \boldsymbol{A} is of dimension $\boldsymbol{n} \times 1$.

Solution: When $\boldsymbol{A} \in \mathbb{R}^{\boldsymbol{n} \times 1}$ then $\boldsymbol{A} \boldsymbol{A}^{T}$ is a rank-one $\boldsymbol{n} \times \boldsymbol{n}$ matrix and $\boldsymbol{A}^{T} \boldsymbol{A}$ is a scalar: the inner product of the column A with itself. \square

15 Show that $A \in \mathbb{R}^{m \times n}$ is of rank one iff [if and only if] there exist two nonzero vectors $\boldsymbol{u} \in \mathbb{R}^{m}$ and $\boldsymbol{v} \in \mathbb{R}^{n}$ such that

$$
A=u v^{T}
$$

What are the eigenvalues and eigenvectors of \boldsymbol{A} ?

Solution: (a)
\leftarrow First we show that: When both \boldsymbol{u} and \boldsymbol{v} are nonzero vectors then the rank of a matrix of the matrix
$\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ is one. The range of \boldsymbol{A} is the set of all vectors of the form

$$
y=A x=u v^{T} x=\left(v^{T} x\right) u
$$

since \boldsymbol{u} is a nonzero vector, and not all vectors $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}$ are zero (because $\boldsymbol{v} \neq 0$) then this space is of dimension 1.
\rightarrow Next we show that: If \boldsymbol{A} is of rank one than there exist nonzero vectors $\boldsymbol{u}, \boldsymbol{v}$ such that $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$. If \boldsymbol{A} is of rank one, then $\boldsymbol{\operatorname { R a n }}(\boldsymbol{A})=\boldsymbol{\operatorname { S p a n }}\{\boldsymbol{u}\}$ for some nonzero vector \boldsymbol{u}. So for every vector \boldsymbol{x}, the vector $\boldsymbol{A x}$ is a multiple of \boldsymbol{u}. Let $e_{1}, e_{2}, \cdots, e_{n}$ the vectors of the canonical basis of \mathbb{R}^{n} and let $\nu_{1}, \nu_{2}, \cdots, \nu_{n}$ the scalars such that $A e_{i}=\nu_{i} u$. Define $v=\left[\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right]^{T}$. Then $A=u \boldsymbol{v}^{T}$ because the matrices A and $\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$ have the same columns. (Note that the \boldsymbol{j}-th column of \boldsymbol{A} is the vector $\boldsymbol{A} \boldsymbol{e}_{j}$). In addition, $\boldsymbol{v} \neq \mathbf{0}$ otherwise $A==0$ which would be a contradiction because $\operatorname{rank}(A)=1$.
(b) Eigenvalues /vectors

Write $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{x}$ then notice that this means $\left(\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}\right) \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{x}$ so either $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{\lambda}=\mathbf{0}$ or $\boldsymbol{x}=\boldsymbol{u}$ and
$\boldsymbol{\lambda}=\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{u}$. Two eigenvalues: 0 and $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{x} \ldots \square$

17 Is it true that

$$
\operatorname{rank}(A)=\operatorname{rank}(\bar{A})=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}\left(A^{H}\right) ?
$$

Solution:

The answer is yes and it follows from the fact that the ranks of \boldsymbol{A} and $\boldsymbol{A}^{\boldsymbol{T}}$ are the same and the ranks of \boldsymbol{A} and \bar{A} are also the same.

It is known that $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}\left(\boldsymbol{A}^{\boldsymbol{T}}\right)$. We now compare the ranks of \boldsymbol{A} and $\overline{\boldsymbol{A}}$ (everything is considered to be complex).

The important property that is used is that if a set of vectors is linearly independent then so is its conjugate. [convince yourself of this by looking at material from 2033]. If \boldsymbol{A} has rank \boldsymbol{r} and for example its first
r columns are the basis of the range, the the same r columns of \bar{A} are also linearly independent. So $\operatorname{rank}(\overline{\boldsymbol{A}}) \geq \operatorname{rank}(\boldsymbol{A})$. Now you can use a similar argument to show that $\boldsymbol{\operatorname { r a n k }}(\boldsymbol{A}) \geq \operatorname{rank}(\overline{\boldsymbol{A}})$. Therefore the ranks are the same.
ω_{21} Eigenvalues of two similar matrices \boldsymbol{A} and \boldsymbol{B} are the same. What about eigenvectors?

Solution: If $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$ then $\boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{-1} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u} \rightarrow \boldsymbol{B}\left(\boldsymbol{X}^{-1} \boldsymbol{u}\right)=\boldsymbol{\lambda}\left(\boldsymbol{X}^{-1} \boldsymbol{u}\right) \rightarrow \boldsymbol{\lambda}$ is an eigenvalue of \boldsymbol{B} with eigenvector $\boldsymbol{X}^{-1} \boldsymbol{u}$ (note that the vector $\boldsymbol{X}^{-1} \boldsymbol{u}$ cannot be equal to zero because $\boldsymbol{u} \neq 0$.) \square

22 Given a polynomial $p(t)$ how would you define $p(A)$?

Solution: If $p(t)=\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2}+\cdots+\alpha_{k} t^{k}$ then

$$
p(A)=\alpha_{0} I+\alpha_{1} A+\alpha_{2} A^{2}+\cdots+\alpha_{k} A^{k}
$$

where

$$
A^{j}=\underbrace{A \times \boldsymbol{A} \times \cdots \times \boldsymbol{A}}_{j \text { times }}
$$

\square

23 Given a function $f(t)$ (e.g., e^{t}) how would you define $f(A)$? [You may limit yourself to the case when \boldsymbol{A} is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$
f(A)=f(0) I+\frac{f^{\prime}(0)}{1!} A+\frac{f^{\prime \prime}(0)}{2!} A^{2} \cdots \frac{f^{(k)}(0)}{k!} A^{k}+\cdots
$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful. We will revisit this in next set.
x_{24} If \boldsymbol{A} is nonsingular what are the eigenvalues/eigenvectors of \boldsymbol{A}^{-1} ?

Solution: Assume that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. Multiply both sides by the inverse of $\boldsymbol{A}: \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{A}^{-1} \boldsymbol{u}$ - then by the
inverse of $\boldsymbol{\lambda}: \boldsymbol{\lambda}^{-1} \boldsymbol{u}=\boldsymbol{A}^{-1} \boldsymbol{u}$. Therefore, $\boldsymbol{1} / \boldsymbol{\lambda}$ is an eigenvalue and \boldsymbol{u} is an associated eigenvector. \square

25 What are the eigenvalues/eigenvectors of $\boldsymbol{A}^{\boldsymbol{k}}$ for a given integer power \boldsymbol{k} ?

Solution: Assume that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. Multiply both sides by \boldsymbol{A} and repeat \boldsymbol{k} times. You will get $\boldsymbol{A}^{\boldsymbol{k}} \boldsymbol{u}=\boldsymbol{\lambda}^{\boldsymbol{k}} \boldsymbol{u}$. Therefore, $\boldsymbol{\lambda}^{k}$ is an eigenvalue of \boldsymbol{A}^{k} and \boldsymbol{u} is an associated eigenvector.

26 What are the eigenvalues/eigenvectors of $\boldsymbol{p}(\boldsymbol{A})$ for a polynomial \boldsymbol{p} ?

Solution: Using the previous result you can show that $\boldsymbol{p}(\boldsymbol{\lambda})$ is an eigenvalue of $\boldsymbol{p}(\boldsymbol{A})$ and \boldsymbol{u} is an associated eigenvector. \square
\&27 What are the eigenvalues/eigenvectors of $f(\boldsymbol{A})$ for a function f ? [Diagonalizable case]

Solution: This will require using the diagonalized form of A : $A=X D X^{-1}$. With this $f(A)=$ $\boldsymbol{X} \boldsymbol{f}(\boldsymbol{D}) \boldsymbol{X}^{-1}$. It becomes clear that the eigenvalues are the diagonal entries of $f(\boldsymbol{D})$, i.e., the values $\boldsymbol{f}\left(\boldsymbol{\lambda}_{i}\right)$ for $\boldsymbol{i}=1, \cdots, \boldsymbol{n}$. As for the eigenvectors - recall that they are the columns of the \boldsymbol{X} matrix in the
diagonalized form - And \boldsymbol{X} is the same for \boldsymbol{A} and $\boldsymbol{f}(\boldsymbol{A})$. So the eigenvectors are the same. \square

228 For two $\boldsymbol{n} \times \boldsymbol{n}$ matrices \boldsymbol{A} and \boldsymbol{B} are the eigenvalues of $\boldsymbol{A} \boldsymbol{B}$ and $\boldsymbol{B} \boldsymbol{A}$ the same?

Solution: We will show that if $\boldsymbol{\lambda}$ is an eigenvalue of $\boldsymbol{A} \boldsymbol{B}$ then it is also an eigenvalue of $\boldsymbol{B} \boldsymbol{A}$. Assume that $\boldsymbol{A B u}=\boldsymbol{\lambda} \boldsymbol{u}$ and multiply both sides by \boldsymbol{B}. Then $\boldsymbol{B} \boldsymbol{A B} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{u}-$ which we write in the form: $\boldsymbol{B} \boldsymbol{A} \boldsymbol{v}=\boldsymbol{\lambda} \boldsymbol{v}$ where $\boldsymbol{v}=\boldsymbol{B} \boldsymbol{u}$. In the situation when $\boldsymbol{v} \neq 0$, we clearly see that $\boldsymbol{\lambda}$ is a nonzero eigenvalue of $\boldsymbol{B} \boldsymbol{A}$ with the associated eigenvector \boldsymbol{v}. We now deal with the case when $\boldsymbol{v}=\mathbf{0}$. In this case, since $\boldsymbol{A B} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$, and $\boldsymbol{u} \neq \mathbf{0}$ we must have $\boldsymbol{\lambda}=\mathbf{0}$. However, clearly $\boldsymbol{\lambda}=\mathbf{0}$ is also an eigenvalue of $\boldsymbol{B} \boldsymbol{A}$ because $\operatorname{det}(B A)=\operatorname{det}(A B)=0$.

We can similarly show that any eigenvalue of $\boldsymbol{B} \boldsymbol{A}$ are also eigenvalues of $\boldsymbol{A} \boldsymbol{B}$ by interchanging the roles of \boldsymbol{A} and \boldsymbol{B}. This completes the proof \square
Trace, spectral radius, and determinant of $A=\left(\begin{array}{ll}2 & 1 \\ 3 & 0\end{array}\right)$.

Solution: Trace is 2 , determinant is -3 . Eigenvalues are $3,-1$ so $\rho(A)=3$. \square

21 What is the inverse of a unitary (complex) or orthogonal (real) matrix?

Solution: If Q is unitary then $Q^{-1}=Q^{H}$. \square

32 What can you say about the diagonal entries of a skew-symmetric (real) matrix?

Solution: They must be equal to zero. \square

33 What can you say about the diagonal entries of a Hermitian (complex) matrix?

Solution: We must have $a_{i i}=\overline{\boldsymbol{a}}_{i i}$. Therefore $\boldsymbol{a}_{i i}$ must be real. \square

034 What can you say about the diagonal entries of a skew-Hermitian (complex) matrix?

Solution: We must have $\boldsymbol{a}_{\boldsymbol{i}}=-\overline{\boldsymbol{a}}_{\boldsymbol{i} \boldsymbol{i}}$. Therefore $\boldsymbol{a}_{\boldsymbol{i}}$ must be purely imaginary. \square

25 Which matrices of the following type are also normal: real symmetric, real skew-symmetric, Hermi-
tian, skew-Hermitian, complex symmetric, complex skew-symmetric matrices.

Solution: Real symmetric, real skew-symmetric, Hermitian, skew-Hermitian matrices are normal. Complex symmetric, complex skew-symmetric matrices are not necessarily normal. \square

439 What does the matrix-vector product Va represent?

Solution: If $\boldsymbol{a}=\left[\boldsymbol{a}_{0}, a_{2}, \cdots, a_{n}\right]$ and $\boldsymbol{p}(\boldsymbol{t})$ is the \boldsymbol{n}-th degree polymomial:

$$
p(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots a_{n} t^{n}
$$

then $\boldsymbol{V} \boldsymbol{a}$ is a vector whose components are the values $\boldsymbol{p}\left(x_{0}\right), \boldsymbol{p}\left(\boldsymbol{x}_{1}\right), \cdots, \boldsymbol{p}\left(\boldsymbol{x}_{n}\right)$. \square

40 Interpret the solution of the linear system $\boldsymbol{V a}=\boldsymbol{y}$ where \boldsymbol{a} is the unknown. Sketch a 'fast' solution method based on this.

Solution: Given the previous exercise, the interpretation is that we are seeking a polynomial of degree \boldsymbol{n} whose values at $\boldsymbol{x}_{0}, \cdots, \boldsymbol{x}_{\boldsymbol{n}}$ are the components of the vector \boldsymbol{y}, i.e., $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{n}$. This is known as
polynomial interpolation (see csci 5302). The polynomial can be determined by, e.g., the Newton table in $O\left(n^{2}\right)$ operations. \square

Basics on matrices [Extracted from csci2033 notes]

$>$ If \boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix (\boldsymbol{m} rows and \boldsymbol{n} columns) -then the scalar entry in the i th row and j th column of A is denoted by $a_{i j}$ and is called the (i, j)-entry of A.

$$
\begin{gathered}
\text { Column } j \\
\text { Row } i \rightarrow\left[\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & \vdots & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]=A \\
\uparrow \\
\\
a_{: 1}
\end{gathered}
$$

$>a_{i j}==i$ th entry (from the top) of the j th column
$>$ Each column of \boldsymbol{A} is a list of \boldsymbol{m} real numbers, which identifies a vector in \mathbb{R}^{m} called a column vector
$>$ The columns $a_{: 1} \ldots, a_{: n}$ - denoted by $a_{1}, a_{2}, \cdots, a_{n}$ so $A=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$
$>$ The diagonal entries in an $m \times n$ matrix A are $a_{11}, a_{22}, a_{33}, \ldots$, and they form the main diagonal of \boldsymbol{A}.
> A diagonal matrix is a matrix whose nondiagonal entries are zero
$>$ The $\boldsymbol{n} \times \boldsymbol{n}$ identity matrix $\boldsymbol{I}_{\boldsymbol{n}}$ Example:

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Matrix Multiplication

$>$ When a matrix \boldsymbol{B} multiplies a vector \boldsymbol{x}, it transforms \boldsymbol{x} into the vector $\boldsymbol{B} \boldsymbol{x}$.
$>$ If this vector is then multiplied in turn by a matrix \boldsymbol{A}, the resulting vector is $\boldsymbol{A}(\boldsymbol{B x})$.

$>$ Thus $\boldsymbol{A}(\boldsymbol{B x})$ is produced from \boldsymbol{x} by a composition of mappings-the linear transformations induced by \boldsymbol{B} and \boldsymbol{A}.
$>$ Note: $\boldsymbol{x} \rightarrow \boldsymbol{A}(\boldsymbol{B} \boldsymbol{x})$ is a linear mapping (prove this).

Goal: to represent this composite mapping as a multiplication by a single matrix, call it C for now, so that

$$
A(B x)=C x
$$

$>$ Assume \boldsymbol{A} is $\boldsymbol{m} \times \boldsymbol{n}, \boldsymbol{B}$ is $\boldsymbol{n} \times \boldsymbol{p}$, and \boldsymbol{x} is in \mathbb{R}^{p}. Denote the columns of \boldsymbol{B} by b_{1}, \cdots, b_{p} and the entries in x by x_{1}, \cdots, x_{p}. Then:

$$
B x=x_{1} b_{1}+\cdots+x_{p} b_{p}
$$

$>$ By the linearity of multiplication by \boldsymbol{A} :

$$
\begin{aligned}
A(B x) & =A\left(x_{1} b_{1}\right)+\cdots+A\left(x_{p} b_{p}\right) \\
& =x_{1} A b_{1}+\cdots+x_{p} A b_{p}
\end{aligned}
$$

$>$ The vector $A(B x)$ is a linear combination of $A b_{1}, \cdots, A b_{p}$, using the entries in x as weights.
$>$ In matrix notation, this linear combination is written as

$$
A(B x)=\left[A b_{1}, A b_{2}, \cdots A b_{p}\right] \cdot x
$$

$>$ Thus, multiplication by $\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]$ transforms x into $A(B x)$.
$>$ Therefore the desired matrix C is the matrix

$$
C=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

$>$ Denoted by $\boldsymbol{A B}$

Definition: If \boldsymbol{A} is an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and if \boldsymbol{B} is an $\boldsymbol{n} \times \boldsymbol{p}$ matrix with columns b_{1}, \cdots, b_{p}, then the product $A B$ is the matrix whose p columns are $A b_{1}, \cdots, A b_{p}$. That is:

$$
A B=A\left[b_{1}, b_{2}, \cdots, b_{p}\right]=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

$>$ Important to remember that :
Multiplication of matrices corresponds to composition of linear transformations.
\&Operation count: How many operations are required to perform product $\boldsymbol{A B}$?

Compute $A B$ when

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{lll}
0 & 2 & -1 \\
1 & 3 & -2
\end{array}\right]
$$

© Compute $\boldsymbol{A B}$ when

$$
A=\left[\begin{array}{llll}
2 & -1 & 2 & 0 \\
1 & -2 & 1 & 0 \\
3 & -2 & 0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & -2 & 2 \\
2 & 1 & -2 \\
-1 & 3 & 2
\end{array}\right]
$$

\& Can you compute $\boldsymbol{A B}$ when

$$
A=\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 2 \\
1 & 3 \\
-1 & 4
\end{array}\right] ?
$$

Row-wise matrix product

$>$ Recall what we did with matrix-vector product to compute a single entry of the vector $\boldsymbol{A x}$
$>$ Can we do the same thing here? i.e., How can we compute the entry $c_{i j}$ of the product $\boldsymbol{A B}$ without computing entire columns?
*Do this to compute entry $(2,2)$ in the first example above.
\& Operation counts: Is more or less expensive to perform the matrix-vector product row-wise instead of column-wise?

Properties of matrix multiplication

Theorem Let \boldsymbol{A} be an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, and let \boldsymbol{B} and \boldsymbol{C} have sizes for which the indicated sums and products are defined.

- $\boldsymbol{A}(\boldsymbol{B C})=(\boldsymbol{A B}) \boldsymbol{C}$ (associative law of multiplication)
- $A(B+C)=A B+A C$ (left distributive law)
- $(B+C) A=B A+C A$ (right distributive law)
- $\alpha(A B)=(\alpha A) B=A(\alpha B)$ for any scalar α
- $I_{m} A=A I_{n}=A$ (product with identity)

If $A B=A C$ then $B=C$ ('simplification'): True-False?
(t) $\boldsymbol{A B}=\mathbf{0}$ then either $\boldsymbol{A}=\mathbf{0}$ or $\boldsymbol{B}=\mathbf{0}$: True or False?
$\boldsymbol{A B}=\boldsymbol{B A}$: True or false??

Square matrices. Matrix powers

$>$ Important particular case when $n=m$ - so matrix is $n \times n$
$>$ In this case if \boldsymbol{x} is in \mathbb{R}^{n} then $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ is also in $\mathbb{R}^{\boldsymbol{n}}$
$>\boldsymbol{A} \boldsymbol{A}$ is also a square $n \times n$ matrix and will be denoted by \boldsymbol{A}^{2}
$>$ More generally, the matrix A^{k} is the matrix which is the product of \boldsymbol{k} copies of \boldsymbol{A} :

$$
A^{1}=A ; \quad A^{2}=A A ; \quad \cdots \quad A^{k}=\underbrace{A \cdots A}_{k \text { times }}
$$

$>$ For consistency define A^{0} to be the identity: $A^{0}=I_{n}$,
$\leftrightarrow A^{l} \times A^{k}=A^{l+k}$ - Also true when k or l is zero.

Transpose of a matrix

Given an $m \times n$ matrix \boldsymbol{A}, the transpose of \boldsymbol{A} is the $\boldsymbol{n} \times m$ matrix, denoted by \boldsymbol{A}^{T}, whose columns are formed from the corresponding rows of \boldsymbol{A}.

Theorem : Let \boldsymbol{A} and \boldsymbol{B} denote matrices whose sizes are appropriate for the following sums and products.

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(\alpha A)^{T}=\alpha A^{T}$ for any scalar α
- $(A B)^{T}=B^{T} A^{T}$

More on matrix products

$>$ Recall: Product of the matrix \boldsymbol{A} by the vector \boldsymbol{x} : $\left(a_{j}==j\right.$ th column of $\left.\boldsymbol{A}\right)$

$$
\left.\begin{array}{c}
y \\
{\left[\begin{array}{c}
\boldsymbol{\beta _ { 1 }} \\
\vdots \\
\boldsymbol{\beta}_{j} \\
\vdots \\
\beta_{n}
\end{array}\right]}
\end{array}=\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right] \quad \begin{gathered}
x \\
{\left[\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{j} \\
\vdots \\
\alpha_{n}
\end{array}\right]} \\
\end{gathered}
$$

- $\boldsymbol{x}, \boldsymbol{y}$ are vectors; \boldsymbol{y} is the result of $\boldsymbol{A} \times \boldsymbol{x}$.
- $a_{1}, a_{2}, \ldots, a_{n}$ are the columns of A
- $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the components of x [scalars]
- $\alpha_{1} a_{1}$ is the first column of A multiplied by the scalar α_{1} which is the first component of \boldsymbol{x}.
- $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{n} a_{n}$ is a linear combination of $a_{1}, a_{2}, \cdots, a_{n}$ with weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.
$>$ This is the 'column-wise' form of the 'matvec'

Example:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] \quad x=\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right] \quad y=?
$$

> Result:

$$
y=-2 \times\left[\begin{array}{l}
1 \\
0
\end{array}\right]+1 \times\left[\begin{array}{c}
2 \\
-1
\end{array}\right]-3 \times\left[\begin{array}{c}
-1 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-10
\end{array}\right]
$$

$>$ Can get i-th component of the result y without the others:

$$
\beta_{i}=\alpha_{1} a_{i 1}+\alpha_{2} a_{i 2}+\cdots+\alpha_{n} a_{i n}
$$

Example: In the above example extract $\boldsymbol{\beta}_{2}$

$$
\beta_{2}=(-2) \times 0+(1) \times(-1)+(-3) \times(3)=-10
$$

$>$ Can compute $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}, \cdots, \boldsymbol{\beta}_{m}$ in this way.
$>$ This is the 'row-wise' form of the 'matvec'

Matrix-Matrix product

> Recall:
$>$ When \boldsymbol{A} is $m \times n, \boldsymbol{B}$ is $\boldsymbol{n} \times \boldsymbol{p}$, the product $\boldsymbol{A B}$ of the matrices \boldsymbol{A} and \boldsymbol{B} is the $m \times p$ matrix defined as

$$
A B=\left[A b_{1}, A b_{2}, \cdots, A b_{p}\right]
$$

where $b_{1}, b_{2}, \cdots, b_{p}$ are the columns of B
$>$ Each $A b_{j}==$ product of \boldsymbol{A} by the j-th column of \boldsymbol{B}. Matrix $\boldsymbol{A B}$ is in $\mathbb{R}^{m \times p}$
> Can use what we know on matvecs to perform the product

1. Column form - In words: "The \boldsymbol{j}-th column of $\boldsymbol{A B}$ is a linear combination of the columns of A, with weights $b_{1 j}, b_{2 j}, \cdots, b_{n j}$ " (entries of j-th col. of B)

Example:

$$
A=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right] \quad B=\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 \\
-3 & 2
\end{array}\right] \quad A B=?
$$

$$
\begin{aligned}
B & =\left[\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
-2 \\
1 \\
-3
\end{array}\right],\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
2
\end{array}\right]\right] \\
& =\left[\begin{array}{cc}
3 & -6 \\
-10 & 8
\end{array}\right]
\end{aligned}
$$

> First column has been computed before: it is equal to:
$(-2)^{*}($ col. 1 of $A)+(1)^{*}(\operatorname{col} .2$ of $A)+(-3)^{*}(\operatorname{col} .3$ of $A)$
$>$ Second column is equal to:
$(1)^{*}(\operatorname{col} .1$ of $A)+(-2)^{*}(\operatorname{col} .2$ of $A)+(2)^{*}(\operatorname{col} .3$ of $A)$
2. If we call \boldsymbol{C} the matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}$ what is $\boldsymbol{c}_{i j}$? From above:

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}+\cdots+a_{i n} b_{n j}
$$

$>$ Fix j and run $i \longrightarrow$ column-wise form just seen
3. Fix \boldsymbol{i} and run $\boldsymbol{j} \longrightarrow$ row-wise form

Example: Get second row of $\boldsymbol{A B}$ in previous example.

$$
c_{2 j}=a_{21} b_{1 j}+a_{22} b_{2 j}+a_{23} b_{3 j}, \quad j=1,2
$$

- Can be read as: $c_{2:}=a_{21} b_{1:}+a_{22} b_{2:}+a_{23} b_{3:}$, or in words:

$$
\begin{aligned}
\text { row2 of } C & =a_{21}(\text { row } 1 \text { of } B)+a_{22}(\text { row2 of } B)+a_{23}(\text { row3 of } B) \\
& =0(\text { row } 1 \text { of } B)+(-1)(\text { row2 of } B)+(3)(\text { row3 of } B) \\
& =\left[\begin{array}{ll}
-10 & 8
\end{array}\right]
\end{aligned}
$$

