\&2 Show that $\bar{X}=X\left(I-\frac{1}{n} e e^{T}\right)$ (here $e=$ vector of all ones). What does the projector $\left(I-\frac{1}{n} e e^{T}\right)$ do?

Solution: Each column of $\overline{\boldsymbol{X}}$ is $\overline{\boldsymbol{x}}=\boldsymbol{x}-\boldsymbol{\mu}$ so that $\overline{\boldsymbol{X}}=\boldsymbol{X}-\boldsymbol{\mu} \boldsymbol{e}^{\boldsymbol{T}}$, where $\boldsymbol{\mu}$ is the sample mean. But we have $\mu=\frac{1}{n} \sum \boldsymbol{x}_{i}=\frac{1}{n} \boldsymbol{X} \boldsymbol{e}$ and so,

$$
\bar{X}=X-\frac{1}{n} X e e^{T}=X\left[I-\frac{1}{n} e e^{T}\right]
$$

The matrix $\left(I-\frac{1}{n} e e^{T}\right)$ represents a projector that centers the data so the mean is zero.

43 Show that solution \boldsymbol{V} also minimizes 'reconstruction error' ..

Solution: The main property that is exploited in the proof is the fact that $\operatorname{Tr}(\boldsymbol{A B C})=\operatorname{Tr}(\boldsymbol{B C A})$ (when dimensions are compatible). First we note that $\sum_{i}\left\|\overline{\boldsymbol{x}}_{i}-\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}} \overline{\boldsymbol{x}}_{i}\right\|^{2}=\|\left(\boldsymbol{I}-\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}\right) \boldsymbol{X}_{-} \boldsymbol{F}^{2}$. We will call
\boldsymbol{P} the pojector $\boldsymbol{P}=\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}$. Then:

$$
\begin{aligned}
\|\left(\boldsymbol{I}-\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}\right) \boldsymbol{X}_{-} \boldsymbol{F}^{2} * & =\operatorname{Tr}(\boldsymbol{I}-\boldsymbol{P}) \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}(\boldsymbol{I}-\boldsymbol{P}) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}-\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)(\boldsymbol{I}-\boldsymbol{P}) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{T} \boldsymbol{P}\right)+\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right)+\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}^{2}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{T} \boldsymbol{P}\right)+\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{P}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{P} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{X} \boldsymbol{X}^{T}\right) \\
& =\operatorname{Tr}\left(\boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}}\right)-\operatorname{Tr}\left(\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{X} \boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{V}\right)
\end{aligned}
$$

The first term is a constant, therefore the minimum is reached when the maxiumn of the second term is reached. \square
$\ldots 4 \ldots$ and that it also maximizes $\sum_{i, j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2}$
Solution: Let us denote by $\overline{\boldsymbol{y}}$ the sample mean of the $\boldsymbol{j}_{j} \mathrm{~s}$, i.e.,

$$
\overline{\boldsymbol{y}}=\frac{1}{n} \sum_{j=1}^{n} \boldsymbol{y}_{j}
$$

We proceed backward examine the sum $\sum_{i, j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|_{2}^{2}$

$$
\begin{aligned}
\sum_{i, j}\left\|y_{i}-y_{j}\right\|_{2}^{2}= & \sum_{i, j}\left\|\left(y_{i}-\bar{y}\right)-\left(y_{j}-\bar{y}\right)\right\|_{2}^{2} \\
= & \sum_{i, j}\left(\left(y_{i}-\bar{y}\right)-\left(y_{j}-\bar{y}\right),\left(y_{i}-\bar{y}\right)-\left(y_{j}-\bar{y}\right)\right) \\
= & \sum_{i} \sum_{j}\left[\left\|\left(y_{i}-\bar{y}\right)\right\|_{2}^{2}+\left\|\left(y_{j}-\bar{y}\right)\right\|_{2}^{2}\right] \ldots \\
& -2 \sum_{i} \sum_{j}\left(\left(y_{i}-\bar{y}\right),\left(y_{j}-\bar{y}\right)\right) \\
= & 2 n \sum_{i}\left\|y_{i}-\bar{y}\right\|_{2}^{2}-2 \sum_{i}\left(y_{i}-\bar{y}, \sum_{j}\left(\bar{y}-y_{j}\right)\right) \\
= & 2 n \sum_{i}\left\|y_{i}-\bar{y}\right\|_{2}^{2}
\end{aligned}
$$

The last equality comes from the fact that $\sum_{j}\left(\overline{\boldsymbol{y}}-\boldsymbol{y}_{j}\right)=0$

Further reading: Some references on applications of the SVD

For image processing:

```
https://arxiv.org/pdf/1211.7102.pdf
```

The extraordinary SVD

```
https://arxiv.org/pdf/1103.2338.pdf%22%20rel=%22nofollow
```

An outstanding paper for understanding the SVD and a few of its applications:
https://sites.math.washington.edu/~morrow/464_16/svd.pdf

An old paper of ours that discusses a form of truncated SVD for face recognition:
https://www-users.cs.umn.edu/~saad/PDF/umsi-2006-16.pdf

