Set 2

✓ 1 Unitary matrices preserve the 2-norm.

Solution: The proof takes only one line if we use the result $(Ax, y) = (x, A^H y)$:

$$\|Qx\|_2^2 = (Qx,Qx) = (x,Q^HQx) = (x,x) = \|x\|_2^2.$$

№3 When do we have equality in Cauchy-Schwarz?

Solution: From the proof of Cauchy-Schwarz it can be seen that we have equality when $x = \lambda y$, i.e., when they are colinear.

Expand (x + y, x + y) – What does Cauchy-Schwarz imply?

Solution: You will see that you can derive the triangle inequality from this expansion and the Cauchy-

• Proof of the Hölder inequality.

$$|(x,y)|\leq \|x\|_p\|y\|_q$$
 , with $rac{1}{p}+rac{1}{q}=1$

Proof: For any z_i, v_i all nonnegative we have, setting $\zeta = \sum z_i$,

$$\left(\sum (z_i/\zeta) v_i \right)^p \leq \sum (z_i/\zeta) v_i^p \text{ (convexity)} \rightarrow \\ \left(\sum z_i v_i \right)^p \leq \left[\sum (z_i/\zeta) v_i^p \right] \zeta^p = \left[\sum z_i v_i^p \right] \zeta^{p-1} \rightarrow \\ \sum z_i v_i \leq \left[\sum z_i v_i^p \right]^{1/p} \zeta^{(p-1)/p} \\ \sum z_i v_i \leq \left[\sum z_i v_i^p \right]^{1/p} \left[\sum z_i \right]^{1/q}$$

Now take $z_i = x_i^q$, and $v_i = y_i * x_i^{1-q}$. Then $z_i v_i = x_i y_i$ and: $z_i v_i^p = x_i^q * (y_i * x_i^{1-q})^p = y_i^p * x_i^{q+p-pq} = y_i^p * x_i^0 == y_i^p$

✓ 5 Second triangle inequality.

Solution: Start by invoking the triangle inequality to write:

$$\|x\| = \|(x-y) + y\| \le \|x-y\| + \|y\| o \|x\| - \|y\| \le \|x-y\|$$

Next exchange the roles of *x* and *y*:

$$\|y\| - \|x\| \le \|y - x\| = \|x - y\|$$

The two inequalities $||x|| - ||y|| \le ||x - y||$ and $||y|| - ||x|| \le ||x - y||$ yield the result since they imply that

$$-\|x-y\| \le \|x\| - \|y\| \le \|x-y\|$$

Consider the metric $d(x, y) = max_i |x_i - y_i|$. Show that any norm in \mathbb{R}^n is a continuous function

with respect to this metric.

Solution: We need to show that we can make ||y|| arbitrarily close to ||x|| by making y 'close' enough to x, where 'close' is measured in terms of the infinity norm distance $d(x, y) = ||x - y||_{\infty}$. Define u = x - y and write u in the canonical basis as $u = \sum_{i=1}^{n} \delta_i e_i$. Then:

$$\|u\| = \|\sum_{i=1}^n \delta_i e_i\| \le \sum_{i=1}^n |\delta_i| \, \|e_i\| \le \max |\delta_i| \sum_{i=1}^n \|e_i\|$$

Setting $M = \sum_{i=1}^n \|e_i\|$ we get $\|u\| \leq M \max |\delta_i| = M \|x - y\|_\infty$

Let ϵ be given and take x, y such that $||x - y||_{\infty} \leq \frac{\epsilon}{M}$. Then, by using the second triangle inequality we obtain:

$$\|\|x\|-\|y\|\|\leq \|x-y\|\leq M\max\delta_i\leq Mrac{\epsilon}{M}=\epsilon.$$

This means that we can make ||y|| arbitrarily close to ||x|| by making y close enough to x in the sense of the defined metric. Therefore $||\cdot||$ is continuous.

\checkmark 7 In \mathbb{R}^n (or \mathbb{C}^n) all norms are equivalent.

Solution: We will do it for $\phi_1 = \|.\|$ some norm, and $\phi_2 = \|.\|_{\infty}$ [and one can see that all other cases will follow from this one].

1. Need to show that for some α we have $||x|| \leq \alpha ||x||_{\infty}$. Express x in the canonical basis of \mathbb{R}^n as $x = \sum x_i e_i$ [look up canonical basis e_i from your csci2033 class.] Then

$$\|x\| = \|\sum x_i e_i\| \leq \sum |x_i| \|e_i\| \leq \max |x_i| \sum \|e_i\| = \|x\|_\infty lpha$$

where $\alpha = \sum ||e_i||$.

2. We need to show that there is a β such that $||x|| \ge \beta ||x||_{\infty}$. Assume $x \ne 0$ and consider $u = x/||x||_{\infty}$. Note that u has infinity norm equal to one. Therefore it belongs to the closed and bounded set $S_{\infty} = \{v | ||v||_{\infty} = 1\}$. Since norms are continuous (seen earlier), the minimum of the norm ||u|| for all

u's in S_∞ is *reached*, i.e., there is a $u_0 \in S_\infty$ such that

$$\min_{u\in |S_\infty|}\|u\|=\|u_0\|.$$

Let us call β this minimum value, i.e., $||u_0|| = \beta$. Note in passing that β cannot be equal to zero otherwise $u_0 = 0$ which would contradict the fact that u_0 belongs to S_{∞} [all vectors in S_{∞} have infinity norm equal to one.] The result follows because $u = x/||x||_{\infty}$, and so, remembering that $u = x/||x||_{\infty}$, we obtain

$$\left\|rac{x}{\|x\|_{\infty}}
ight\|\geqeta
ightarrow\|x\|\geqeta\|x\|_{\infty}$$

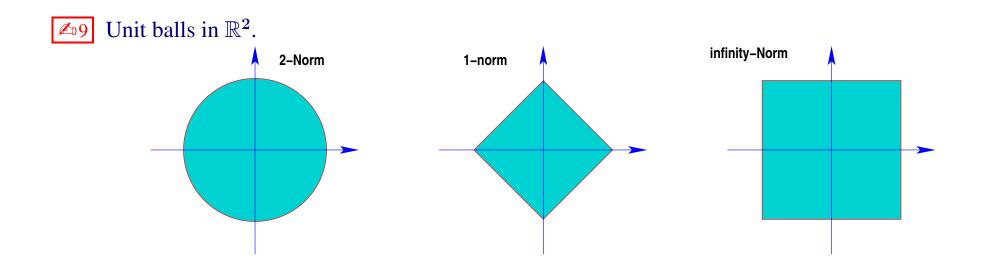
This completes the proof

1 Show that for any x: $\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1$

Solution: For the right inequality, it is easy to see that $||x||_2 \le ||x||_1$ because $\sum_i x_i^2 \le \left[\sum_i |x_i|\right]^2$

For the left inequality, we rely on Cauchy-Schwarz. If we call **1** the vector of all ones, then:

$$\|x\|_1 = \sum_i |x_i|.1 \le \|x\|_2 \|One\|_2 = \sqrt{n} \|x\|_2 \|$$



14 Show that $\rho(A) \leq ||A||$ for any matrix norm.

Solution: Let λ be the largest (in modulus) eigenvalue of A with associated eigenvector u. Then

$$Au=\lambda u
ightarrow rac{\|Au\|}{\|u\|}=|\lambda|=
ho(A)$$

This implies that

$$ho(A) \leq \max_{x
eq 0} rac{\|Ax\|}{\|x\|} = \|A\|$$

▲15 Is $\rho(A)$ a norm?

Solution: This was answered in the notes.

Given a function f(t) (e.g., e^t) how would you define f(A)? [You may limit yourself to the case when A is diagonalizable]

Solution: The easiest way would be through the Taylor series expansion..

$$f(A) = f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 \cdots rac{f^{(k)}(0)}{k!}A^k + \cdots$$

However, this will require a justification: Will this expression 'converge' as the number of terms goes to infinity? This is where norms are useful.

In the simplest case where A is diagonalizable you can write $A = XDX^{-1}$ and then consider the k-term part of the Taylor series expression above:

$$egin{aligned} F_k &= f(0)I + rac{f'(0)}{1!}A + rac{f''(0)}{2!}A^2 + \dots + rac{f^{(k)}(0)}{k!}A^k \ &= X\left[f(0)I + rac{f'(0)}{1!}D + rac{f''(0)}{2!}D^2 + \dots + rac{f^{(k)}(0)}{k!}D^k
ight]X^{-1} \ &\equiv XD_kX^{-1} \end{aligned}$$

where D_k is the matrix inside the brackets in line 2 of above equations. The i - th diagonal entry of D_k

is of the form

$$f_k(\lambda_i) = f(0) + rac{f'(0)}{1!} \lambda_i + rac{f''(0)}{2!} \lambda_i^2 + \dots + rac{f^{(k)}(0)}{k!} \lambda_i^k,$$

which is just the *k*-term part of the Taylor series expansion of $f(\lambda_i)$. Each of these will converge to $f(\lambda_i)$. Now it is easy to complete the argument. If we call D_f the diagonal matrix whose *i*th diagonal entry is $f(\lambda_i)$ and f_A the matrix defined by

$$f_A = X D_f X^{-1},$$

then clearly

$$egin{aligned} \|F_k - F_A\|_2 &= \|X(D_k - D_A)X^{-1}\|_2 \leq \|X\|_2 \|X^{-1}\|_2 \|D_k - D_A\|_2 \ &\leq \|X\|_2 \|X^{-1}\|_2 \max_i |f_k(\lambda_i) - f(\lambda_i)| \end{aligned}$$

which converges to zero as \boldsymbol{k} goes to infinity.

17 The eigenvalues of $A^H A$ and $A A^H$ are real nonnegative.

Solution: Let us show it for $A^H A$ [the other case is similar] If λ , u is an eigenpair of $A^H A$ then $(A^H A)u =$

 λu . Take inner products with u on both sides. Then:

$$\lambda(u,u)=((A^HA)u,u)=(Au,Au)=\|Au\|^2$$

Therefore, $\lambda = \|Au\|^2 / \|u\|^2$ which is a real nonnegative number.

[Note: 1) Observe how simple the proof is for such an important fact. It is based on the result $(Ax, y) = (x, A^H y)$. 2) The singular values of A are the square roots of the eigenvalues of $A^H A$ if $m \ge n$ or those of the eigenvalues of AA^H if m < n. So there are always $\min(m, n)$ singular values. This is really just a preliminary definition as we need to refer to singular values often – but we will see singular values and the singular value decomposition in great detail later.]

18 Prove that when $A = uv^T$ then $||A||_2 = ||u||_2 ||v||_2$.

Solution: We start by dealing with the eigenvalues of an arbitrary matrix of the form $A = uv^T$ where both

u and v are in \mathbb{R}^n . From $Ax = \lambda x$ we get:

$$uv^Tx = \lambda x
ightarrow (v^Tx)u = \lambda x$$

Notice that we did this because $v^T x$ is a scalar. We have 2 cases.

Case 1: $v^T x = 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = 0$. So any vector that is orthogonal to v is an eigenvector of A associated with the eigenvalue $\lambda = 0$. (It can be shown that the eigenvalue 0 is of multiplicity n - 1).

Case 2: $v^T x \neq 0$. In this case it is clear that the equation $Ax = \lambda x$ is satisfied with $\lambda = v^T u$ and x = u. So u is an eigenvector of A associated with the eigenvalue $v^T x$.

In summary the matrix uv^T has only two eigenvalues: 0, and v^Tu .

Going back to the original question, we consider now $A = uv^T$ and we are interested in the 2-norm of A.

We have

$$\|A\|_2^2 =
ho(A^TA) =
ho(vu^Tuv^T) = \|u\|_2^2
ho(vv^T) = \|u\|_2^2\|v\|_2^2.$$

The last relation comes from what was done above to determine the eigenvalues of vv^T . So in the end, $\|A\|_2 = \|u\|_2 \|v\|_2$.

19 In this case what is $||A||_F$?

Solution: Only the last part of the above answer changes (ρ is replaced by Tr) and you will find that actually the Frobenius norm of uv^T is again equal to $||u||_2 ||v||_2$.

Proof of Cauchy-Schwarz inequality:

$$|(x,y)|^2 \le (x,x) (y,y).$$
 (1)

Proof: We begin by expanding $(x - \lambda y, x - \lambda y)$ using properties of inner products:

$$\lambda(x-\lambda y,x-\lambda y)=(x,x)-ar\lambda(x,y)-\lambda(y,x)+|\lambda|^2(y,y).$$

If y = 0 then the inequality is trivially satisfied. Assume that $y \neq 0$ and take $\lambda = (x, y)/(y, y)$. Then, from the above equality, $(x - \lambda y, x - \lambda y) \ge 0$ shows that

$$egin{aligned} 0 &\leq (x-\lambda y,x-\lambda y) \;=\; (x,x) - 2rac{|(x,y)|^2}{(y,y)} + rac{|(x,y)|^2}{(y,y)} \ &=\; (x,x) - rac{|(x,y)|^2}{(y,y)}, \end{aligned}$$

which yields the result.