
CSci 5304, F’22 Solution keys to some exercises from: Set 3

-1 Exact solution of system
2 4 4

1 5 6

1 3 1

x1

x2

x3

 =

6

4

8

Solution: You will find x = [1, 3,−2]T . �

-2 Justify the column version of Back-subsitution algorithm.

Solution: The systemAx = b can be written in column form as follows:

x1a:,1 + x2a:,2 + · · · + xna:,n = b

3-1

In first step we compute xn = bn/an,n. Now move last term in left-hand side of above system to the right:

x1a:,1 + x2a:,2 + · · · + xn−1a:,n−1 = b− xna:,n ≡ b(1)

This is a new system of n equations that has (n − 1) unknowns and the right-hand-side b(1). The last

equation of this system is of the form 0 = 0 and can therefore be ignored. Thus, we end up wih a system of

size (n− 1)× (n− 1) that is still upper triangular and we can repeat the above argument recursively.

-3 Exact operation count for GE.

Solution:

T =

n−1∑
k=1

n∑
i=k+1

(2(n− k) + 3)

=

n−1∑
k=1

(2(n− k) + 3)(n− k)

3-2

T = 2

n−1∑
k=1

(n− k)2 + 3

n−1∑
k=1

(n− k)

= 2

n−1∑
j=1

j2 + 3

n−1∑
j=1

j

In the last step we made a change of variables j = n−k. Now we know that
∑n

k=1 k
2 = n(n+1)(2n+

1)/6 and
∑n

k=1 k = n(n+ 1)/2 and so

T = 2
(n− 1)(n)(2n− 1)

6
+ 3 ×

n(n− 1)

2

=

= n(n− 1)

(
2n

3
+

7

6

)
(1)

Finally observe the remarkable fact that the final expression (1) is always an integer (it has to be) no matter

what (integer) value n takes. �

3-3

-4 Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A

and different b’s.

Solution: If we have the LU factorizationA = LU available then we can solve the linear systemAx = b

by writing it as

L (Ux)︸ ︷︷ ︸
y

= b

So we solve for y: Ly = b then once y is computed we solve for x: Ux = y. This involves two triangular

solves at the cost of n2 each instead of theO(n3) cost of redoing everything with Gaussian elimination.�

-5 LU factorization of the matrixA =

2 4 4

1 5 6

1 3 1

?

3-4

Solution: You will find

L =

1 0 0

1/2 1 0

1/2 1/3 1

 U =

2 4 4

0 3 4

0 0 −7/3

 �

-6 Determinant ofA?

Solution: It is the determinant of U which is −12.

-7 True or false: “Computing the LU factorization of matrixA involves more arithmetic operations than

solving a linear systemAx = b by Gaussian elimination”.

Solution: The number of arithmetic operations is identical. (The LU factorization involves additional

memory moves to store the factors - but these are no floating point operations)

-8 Operation count for Gauss-Jordan. Order of the cost? How does it compare with Gaussian Elimina-

3-5

tion?

Solution: From the notes:

T =

n−1∑
k=1

n−1∑
i=1

[2(n− k) + 3)] =

n−1∑
k=1

(n− 1)[2(n− k) + 3]

= (n− 1)

n−1∑
j=1

[2j + 3]

= (n− 1) [n(n− 1) + 3(n− 1)]

= (n− 1)2(n+ 3) = (n− 1)3 + 4(n− 1)2

The bottom line is that the cost is ≈ n3 which is 50% more expensive than GE. This additional cost is not

worth it in spite of the simplicity of the algorithm. For this Gauss-Jordan is seldom used in practice.

3-6

-9 What is the matrix PA when

P =

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

A =

1 2 3 4

5 6 7 8

9 0 −1 2

−3 4 −5 6

?

Solution: Instead of multiplying you just permute the row: row 1 in new matrix is row 3 of old matrix, row

2 is row 1 of old matrix, etc.

PA =

9 0 −1 2

1 2 3 4

−3 4 −5 6

5 6 7 8

-10 In the previous example where

3-7

>> A = [1 2 3 4; 5 6 7 8; 9 0 -1 2 ; -3 4 -5 6]

Matlab gives det(A) = −896. What is det(PA)?

Solution: It changes sign so det(PA) = 896. This is because the permutation π = [3, 1, 4, 2] is made

of 3 interchanges.

-11 Given a banded matrix with upper bandwidth q and lower bandwidth p, what is the operation count

(leading term only) for solving the linear system Ax = b with Gaussian elimination without pivoting?

What happens when partial pivoting is used? Give the new operation count for the worst case scenario.

Solution: [Note: it is assumed that p � n and q � n but p and q are not related]. The important obser-

vation here is that Gaussian elimination without pivoting for this band matrix will operate on a rectangle: at

step k only rows k + 1 to k + p are affected and columns k + 1 to k + q are affected.

3-8

In this rectangle each entry will be modified at the cost of 2 operations (*, +). Total: 2pq for each step.

So Gaussian elimination without pivoting for this band matrix costs approximately 2npq flops. Using band

backward substitution to obtain the solution x costs ≈ 2nq flops. The total operation count (leading term

only): ≈ 2npq + 2nq = 2nq(p + 1). Note that when p is small the cost of susbstitution cannot be

ignored.

For the Gaussian elimination with pivoting, the upper bandwidth of the resulting matrix will be p + q. In

3-9

this case, the total operation count (leading term only) becomes: ≈ 2np(p+ q)(p+ 1).

Additional notes on the LU factorization

I mentioned in class that there is a more intuitive approach to understanding where the LU factorization

comes from. Consider the algorithm - and the illustration that goes with it :

piv = a(i,k)/a(k,k)

row(i):=row(i) − piv*row(k)

For i=k+1:n Do:

Row k

Row i

A

Pivot column

a(k,k)

piv = a(i,k)/a(k,k)

We will focus on how the i-th row is transformed. In words: the ith row undergoes i − 1 transformations

3-10

(each indexed by k in the algorithm) - after which it does not change. Each of these transformations is as

follows

ai,: = ai,: − piv ∗ ak,:

We will need to make the following changes to the notation for better clarity. Once a row say aj,: no longer

changes [i.e., when it undergoes no further transformations] we will call it uj,: - reflecting the fact that this

will end up in the final U matrix of the LU factorization. In addition we will change ‘piv’ in the above

equation into lik which we recall is equal to aik/akk. Finally, we must also add a superscript to row i to

index the transformation number k. With this, the above equation becomes

a
(k)
i,: = a

(k−1)
i,: − lik ∗ uk,:

Notice how ak,: has been changed to uk,:. Indeed the pivot row used for any elimination no longer changes.

We will write this for k = 1, 2, · · · , i − 1 After these i − 1 transformations a(k)
i,: is no longer changed

and becomes a u-row.

3-11

a
(1)
i,: = ai,: − li1 ∗ u1,:

a
(2)
i,: = a

(1)
i,: − li2 ∗ u2,:

a
(3)
i,: = a

(2)
i,: − li3 ∗ u2,:

· · · = · · · − () ∗ (· · ·)

a
(i−2)
i,: = a

(i−3)
i,: − li,i−2 ∗ u2,:

a
(i−1)
i,: = a

(i−2)
i,: − li,i−1 ∗ u2,:

Notice that a(0)
i: is just ai:. If you add all the equations on the left

- things cancel out - and you will find:

a
(i−1)
i: = ai: −

i−1∑
k=1

likuk:

The row a
(i−1)
i: we have on the left is no longer to be modified.

Therefore, it should be change to ui:. and so

ui: = ai: −
i−1∑
k=1

likuk: or ai: = ui: +

i−1∑
k=1

likuk:.

Next define the matrixLwhose entries lij’s are the same as above for i > j (lower part) lii = 1 (diagonal),

and lij = 0 for j > i (upper part). The above equation can be rewritten as

ai: = ui: +

i−1∑
k=1

likuk: =
n∑
k=1

likuk:

This translates exactly the equationA = LU written in row-form. �

3-12

