CSci 5304, F’22 Solution keys to some exercises from: Set 3

#»11| Exact solution of system

(2 a4 4\ (a) (o)

\to3 1) \m) 8

Solution: You will find z = [1,3, —2]T. OJ

#12| Justify the column version of Back-subsitution algorithm.

Solution: The system Ax = b can be written in column form as follows:

ria.1 + T20.2+ -+ Tpa., = b



In first step we compute x,, = b,,/ay,,. Now move last term in left-hand side of above system to the right:
Tia.1 + T20.2 + -+ Tp_1a.p—1 = b —xpa., = bV

This is a new system of n equations that has (. — 1) unknowns and the right-hand-side b(!). The last

equation of this system is of the form 0 = 0 and can therefore be ignored. Thus, we end up wih a system of

size (n — 1) X (n — 1) that is still upper triangular and we can repeat the above argument recursively.

#13| Exact operation count for GE.

Solution:

T = Z_: > (2(n— k) +3)
k=1 i1=k+1

= 3 (@2(n — k) +3)(n — k)

k=1



n—1 n—1
T =2) (n—k)>+3) (n—k)
k=1 k=1
n—1 n—1
=2 743> j
j=1 j=1

In the last step we made a change of variables j = n— k. Now we know that >, k* = n(n+1)(2n+
1)/6and ),k =n(n+ 1)/2and so

N 1)(?;)(271 — 1) +3x n(nz— 1)
= n(n—1) (2?71 + g) (1)

Finally observe the remarkable fact that the final expression (I)) is always an integer (it has to be) no matter

what (integer) value n takes. []



#v4| Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A

and different b’s.

Solution: If we have the LU factorization A = LU available then we can solve the linear system Ax = b
by writing it as

L({U=x) =5
——
y

So we solve for y: Ly = b then once y is computed we solve for &: Ux = y. This involves two triangular

solves at the cost of n? each instead of the O (n?) cost of redoing everything with Gaussian elimination.[]

(244\

#5| LU factorization of thematrix A = |1 5 6 |?

K131)




Solution: You will find

(1 0 o (24 4 )

L=11/2 1 o U=]03 4 u
\1/2 1/3 1) \0 0 —7/3)

#6| Determinant of A?

Solution: It 1s the determinant of U which is —12.

#17| True or false: “Computing the LU factorization of matrix A involves more arithmetic operations than

solving a linear system Ax = b by Gaussian elimination”.

Solution: The number of arithmetic operations is identical. (The LU factorization involves additional

memory moves to store the factors - but these are no floating point operations)

#8| Operation count for Gauss-Jordan. Order of the cost? How does it compare with Gaussian Elimina-




tion?

Solution: From the notes:

T =Y Y-k )= (- 1)2An k) +3

= (1) Y (2 +3
= (n—1)[n(n—-1)+ 3(n — 1)]
= (n—1*n+3)=n-—-1)>+4(n—1)>*

The bottom line is that the cost is &= n® which is 50% more expensive than GE. This additional cost is not

worth it in spite of the simplicity of the algorithm. For this Gauss-Jordan is seldom used in practice.




#9 What is the matrix P A when

(001 0) (1234\

1000 5 6 7 8
0001 9 0 —1 2

\0100) \—34—56/

Solution: Instead of multiplying you just permute the row: row 1 in new matrix is row 3 of old matrix, row

[ 9 0—12\

1 2 3 4

2 1s row 1 of old matrix, etc.

PA =
-3 4 —5 6

\5678)

#310| In the previous example where




> A =[1234; 56 78; 9 0-12,; -3 4 -5 6]

Matlab gives det(A) = —896. What is det(P A)?

Solution: It changes sign so det(P A) = 896. This is because the permutation w = [3, 1,4, 2] is made

of 3 interchanges.

#111| Given a banded matrix with upper bandwidth g and lower bandwidth p, what is the operation count

(leading term only) for solving the linear system Ax = b with Gaussian elimination without pivoting?

What happens when partial pivoting is used? Give the new operation count for the worst case scenario.

Solution: [Note: it is assumed that p << 1 and g << n but p and q are not related]. The important obser-
vation here 1s that Gaussian elimination without pivoting for this band matrix will operate on a rectangle: at

step k only rows k + 1 to k + p are affected and columns k + 1 to k + q are affected.



In this rectangle each entry will be modified at the cost of 2 operations (*, +). Total: 2pqg for each step.
So Gaussian elimination without pivoting for this band matrix costs approximately 2npq flops. Using band
backward substitution to obtain the solution x costs = 2nq flops. The total operation count (leading term
only): = 2npq + 2nq = 2nq(p + 1). Note that when p is small the cost of susbstitution cannot be

ignored.

For the Gaussian elimination with pivoting, the upper bandwidth of the resulting matrix will be p 4+ q. In



this case, the total operation count (leading term only) becomes: =~ 2np(p + q)(p + 1).

Additional notes on the LU factorization

I mentioned in class that there is a more intuitive approach to understanding where the LU factorization

comes from. Consider the algorithm - and the illustration that goes with it :

Pivot column
T ¢ a(k,k)
N\
IR Row k
Piv = altkafkk For i=k+1:n Do:
S ubelelelat b = Row i piv = a(i,k)/a(k,k)
A row(i):=row(i) - piv*row(k)

We will focus on how the 2-th row is transformed. In words: the zth row undergoes 2 — 1 transformations



(each indexed by k in the algorithm) - after which it does not change. Each of these transformations is as
follows

ai,: — ai’: - pZ'U %k ak,:

We will need to make the following changes to the notation for better clarity. Once a row say a;,. no longer
changes [i.e., when it undergoes no further transformations] we will call it w; . - reflecting the fact that this
will end up in the final U matrix of the LU factorization. In addition we will change ‘piv’ in the above
equation into l;; which we recall is equal to a;i/agk. Finally, we must also add a superscript to row % to

index the transformation number k. With this, the above equation becomes

o) = gD

Ty

— L, * up,;

Notice how ay . has been changed to uy,.. Indeed the pivot row used for any elimination no longer changes.
(k)

We will write this for k = 1,2,--- ,2 — 1 After these 2 — 1 transformations a; ;" is no longer changed

and becomes a u-row.



Notice that ag)) is just a;.. If you add all the equations on the left

az(i) — s, — Ly % uy, - things cancel out - and you will find:

1—1
ag) = C"?(l,l:) — biz * U, ai™ = a; — Z Likug:
ag) af;i) — liz * ug,; k=1

The row a(-,i_l)
N N i

Therefore, it should be change to u;.. and so

we have on the left is no longer to be modified.

1, - aZ,: ’L,’L—2 * uza
( ) ( ) 1—1 1—1
i—1 i—2
a;. ' =a;, " —lii1*ug; Ui = Ay — E Lirug, or a; = u; + E Lirug..
k=1 k=1

Next define the matrix L whose entries [;;’s are the same as above for < > j (lower part) [;; = 1 (diagonal),

and l;; = 0 for 3 > < (upper part). The above equation can be rewritten as

1—1 n
a;. = u;. + g Lirug. = g Likug.

This translates exactly the equation A = LU written in row-form. []



