1 Non associativity in the presence of round-off.

Solution: This is done in a class demo and the diary should be posted. Here are the commands.

```
n = 10000;
a = randn (n,1); b = randn(n,1); c = randn(n,1);
t = ((a+b) +c == a+(b+c));
sum(t)
```

Right-hand side in 3rd line returns 1 for each instance when the two numbers are the same. \square
$\square 2$ Find machine epsilon in matlab.

Solution:

```
u = 1;
```

for $i=0: 999$
fprintf(1,' $\left.i=\% d, u=\% e \backslash n^{\prime}, i, u\right)$
if (1.0 $+u==1.0)$ break, end
$u=u / 2 ;$
end
$u=u * 2$

Proof of Lemma: If $\left|\delta_{i}\right| \leq \underline{\mathbf{u}}$ and $n \underline{\mathbf{u}}<1$ then

$$
\Pi_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n} \quad \text { where } \quad\left|\theta_{n}\right| \leq \frac{n \underline{\mathbf{u}}}{1-n \underline{\mathbf{u}}}
$$

Solution:

The proof is by induction on \boldsymbol{n}.

1) Basis of induction. When $\boldsymbol{n}=1$ then the product reduces to $1+\delta_{i}$ and so we can take $\boldsymbol{\theta}_{\boldsymbol{n}}=\delta_{n}$ and we know that $\left|\delta_{n}\right| \leq \underline{\mathbf{u}}$ from the assumptions and so

$$
\left|\theta_{n}\right| \leq \underline{\mathbf{u}} \leq \frac{\underline{\mathbf{u}}}{1-\underline{\mathrm{u}}}
$$

as desired.
2) Induction step. Assume now that the result as stated is true for \boldsymbol{n} and consider a product with $\boldsymbol{n}+\mathbf{1}$ terms: $\Pi_{i=1}^{n+1}\left(1+\delta_{i}\right)$. We can write this as $\left(1+\delta_{n+1}\right) \Pi_{i=1}^{n}\left(1+\delta_{i}\right)$ and from the induction hypothesis we get:

$$
\Pi_{i=1}^{n+1}\left(1+\delta_{i}\right)=\left(1+\theta_{n}\right)\left(1+\delta_{n+1}\right)=1+\theta_{n}+\delta_{n+1}+\theta_{n} \delta_{n+1}
$$

with $\boldsymbol{\theta}_{n}$ satisfying the inequality $\boldsymbol{\theta}_{n} \leq(\boldsymbol{n} \underline{\mathbf{u}}) /(\mathbf{1}-\boldsymbol{n} \underline{\mathbf{u}})$. We call $\boldsymbol{\theta}_{n+1}$ the quantity $\boldsymbol{\theta}_{n+1}=\boldsymbol{\theta}_{n}+\boldsymbol{\delta}_{n+1}+$
$\boldsymbol{\theta}_{\boldsymbol{n}} \boldsymbol{\delta}_{n+1}$, and we have

$$
\begin{aligned}
\left|\theta_{n+1}\right| & =\left|\theta_{n}+\delta_{n+1}+\theta_{n} \delta_{n+1}\right| \\
& \leq \frac{n \underline{\mathbf{u}}}{1-n \underline{\mathbf{u}}}+\underline{\mathbf{u}}+\frac{n \underline{\mathbf{u}}}{1-n \underline{\mathbf{u}}} \times \underline{\mathrm{u}}=\frac{n \underline{\mathbf{u}}+{\underline{\mathrm{u}}(1-n \underline{\mathbf{u}})+n \underline{\mathrm{u}}^{2}}_{1-n \underline{\mathbf{u}}}^{1-1)}=\frac{(n+1) \underline{\mathbf{u}}}{1-n \underline{\mathbf{u}}}}{} \\
& \leq \frac{(n+1) \underline{\mathbf{u}}}{1-(n+1) \underline{\mathbf{u}})}
\end{aligned}
$$

This establishes the result with \boldsymbol{n} replaced by $\boldsymbol{n}+\mathbf{1}$ as wanted and completes the proof. \square
\otimes_{5} Assume you use single precision for which you have $\underline{\mathbf{u}}=2 . \times 10^{-6}$. What is the largest \boldsymbol{n} for which $\boldsymbol{n} \underline{\mathbf{u}} \leq \mathbf{0 . 0 1}$ holds? Any conclusions for the use of single precision arithmetic?

Solution: We need $n \leq 0.01 /\left(2.0 \times 10^{-4}\right)$ which gives $n \leq 5,000$. Hence, single precision is inadequate for computations involving long inner products.
\& What does the main result on inner products imply for the case when $\boldsymbol{y}=\boldsymbol{x}$? [Contrast the relative accuracy you get in this case vs. the general case when $\boldsymbol{y} \neq \boldsymbol{x}]$ \square

Solution: In this case we have

$$
\left|f l\left(x^{T} x\right)-\left(x^{T} x\right)\right| \leq \gamma_{n} x^{T} x
$$

which implies that we will always have a small relative error. Not true for the general case because $>$ This leads to the final result (forward form)

$$
\left|f l\left(y^{T} x\right)-\left(y^{T} x\right)\right| \leq \gamma_{n}|y|^{T}|x|
$$

does not imply a small relative error which would mean $\left|\boldsymbol{f l}\left(\boldsymbol{y}^{T} \boldsymbol{x}\right)-\left(\boldsymbol{y}^{T} \boldsymbol{x}\right)\right| \leq \boldsymbol{\epsilon}\left|\boldsymbol{y}^{T} \boldsymbol{x}\right|$ where $\boldsymbol{\epsilon}$ is small.
\square

Sh S 0 for any $\boldsymbol{x}, \boldsymbol{y}$, there exist $\Delta x, \Delta y$ such that

$$
\begin{aligned}
& f l\left(x^{T} y\right)=(x+\Delta x)^{T} y, \quad \text { with } \quad|\Delta x| \leq \gamma_{n}|x| \\
& f l\left(x^{T} y\right)=x^{T}(y+\Delta y), \quad \text { with } \quad|\Delta y| \leq \gamma_{n}|y|
\end{aligned}
$$

Solution:

The main result we proved is that

$$
f l\left(y^{T} x\right)=\sum_{i=1}^{n} x_{i} y_{i}\left(1+\theta_{i}\right) \quad \text { where } \quad\left|\theta_{i}\right| \leq \gamma_{n}
$$

The first relation comes from just attaching each $\left(\mathbf{1}+\boldsymbol{\theta}_{\boldsymbol{i}}\right)$ to $\boldsymbol{x}_{\boldsymbol{i}}$ so $\boldsymbol{x}_{\boldsymbol{i}}$ is replaced by $\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{\theta}_{\boldsymbol{i}} \boldsymbol{x}_{\boldsymbol{i}} \ldots$ Similarly for the second relation. \square

88 (Continuation) Let \boldsymbol{A} an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, \boldsymbol{x} an \boldsymbol{n}-vector, and $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$. Show that there exist a matrix ΔA such

$$
f l(y)=(A+\Delta A) x, \quad \text { with } \quad|\Delta A| \leq \gamma_{n}|A|
$$

Solution: The result comes from applying the result on inner products to each entry \boldsymbol{y}_{i} of \boldsymbol{y} - which is the inner product of row \boldsymbol{i} with \boldsymbol{y}. We use the first of the two results above:

$$
f l\left(y_{i}\right)=\left(a_{i,:}+\Delta a_{i,:}\right)^{T} y \quad \text { with } \quad\left|\Delta a_{i,:}\right| \leq \gamma_{n}\left|a_{i,:}\right|
$$

the result follows from expressing this in matrix form.

09 (Continuation) From the above derive a result about a column of the product of two matrices \boldsymbol{A} and \boldsymbol{B}. Does a similar result hold for the product $\boldsymbol{A} \boldsymbol{B}$ as a whole?

Solution: We can have a result each column since this is just a matrix-vector product. How this does not translate into a result for $\boldsymbol{A} \boldsymbol{B}$ because the $\boldsymbol{\Delta} \boldsymbol{A}$ we get for each column will depend on the column. Specifically, for the j-th column of B you will have a certain matrix $(\Delta A)_{j}$ such that $f l(A B(:, j))=$ $\left(A+(\Delta A)_{j}\right) B(:, j)$ with certain conditions as set in previous exercise. However this $(\Delta A)_{j}$ is *NOT* the same matrix for each column. So you cannot say $f l(A)=(A+\Delta A) B, \ldots \square$

Supplemental notes

The importance of floating point analysis cannot be overstated. There were many instances where poor implementation of algorithms failed and led to - on occasion - disastrous results. One of the best examples
is the failed launch of the European Ariane rocket in 1996 [Ariane flight V88]. See the story in this wikipedia page

