α_{1} Show that $\kappa(\boldsymbol{I})=1$;
Solution: This is obvious because for any matrix norm $\|I\|=\left\|I^{-1}\right\|=1 . \square$
(2) Show that $\kappa(A) \geq 1$;

Solution: We have $\left\|A A^{-1}\right\|=\|I\|=1$ therefore $1=\left\|A A^{-1}\right\| \leq\|A\|\left\|A^{-1}\right\|=\kappa(A) \square$
Show that if $\|E\| /\|A\| \leq \delta$ and $\left\|e_{b}\right\| /\|b\| \leq \delta$ then

$$
\frac{\|x-y\|}{\|x\|} \leq \frac{2 \delta \kappa(A)}{1-\delta \kappa(A)}
$$

Solution: From the main theorem (theorem 1) we have

$$
\frac{\|x-y\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|A\|}{1-\left\|A^{-1}\right\|\|E\|}\left(\frac{\|E\|}{\|A\|}+\frac{\left\|e_{b}\right\|}{\|b\|}\right)
$$

If $\|E\| \leq \delta$ and $\left\|e_{b}\right\| /\|b\| \leq \delta$ then:

$$
\begin{aligned}
\frac{\|x-y\|}{\|x\|} & \leq \frac{\kappa(A) \times 2 \delta}{1-\left\|A^{-1}\right\|\|E\|} \\
& \leq \frac{2 \delta \kappa(A)}{1-\left\|A^{-1}\right\|\|A\| \times(\|E\| /\|A\|)} \\
& \leq \frac{2 \delta \kappa(A)}{1-\delta \kappa(A)}
\end{aligned}
$$

\square
$\Delta 9$ Show that $\frac{\|x-\tilde{x}\|}{\|x\|} \geq \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}$.
Solution: As before we start with noting that $\boldsymbol{A}(\boldsymbol{x}-\tilde{\boldsymbol{x}})=\boldsymbol{b}-\boldsymbol{A} \tilde{\boldsymbol{x}}=\boldsymbol{r}$. So:

$$
\|r\| \leq\|A\|\|x-\tilde{x}\| \rightarrow \frac{\|r\|}{\|b\|} \leq\|A\| \frac{\|x-\tilde{x}\|}{\|b\|}
$$

Next from $\|x\|=\left\|\boldsymbol{A}^{-1} \boldsymbol{b}\right\| \leq\left\|\boldsymbol{A}^{-1}\right\|\|b\|$ we get $\|\boldsymbol{b}\| \geq\|x\| /\left\|\boldsymbol{A}^{-1}\right\|$ and so

$$
\frac{\|r\|}{\|b\|} \leq\|A\| \frac{\|x-\tilde{x}\|}{\|x\| /\left\|A^{-1}\right\|}=\kappa(A) \frac{\|x-\tilde{x}\|}{\|x\|}
$$

which yields the result after dividing the 2 sides by $\boldsymbol{\kappa}(\boldsymbol{A}) . \square$

Proof of Theorem 3

Let $D \equiv\|E\|\|y\|+\left\|e_{b}\right\|$ and $\eta \equiv \eta_{E, e_{b}}(y)$. The theorem states that $\eta=\|r\| / D$. Proof in 2 steps.

First: Any $\Delta \boldsymbol{A}, \Delta \boldsymbol{b}$ pair satisfying (1) is such that $\epsilon \geq\|r\| / D$. Indeed from (1) we have (recall that $r=b-A y$)

$$
\begin{gathered}
A y+\Delta A y=b+\Delta b \rightarrow r=\Delta A y-\Delta b \rightarrow \\
\|r\| \leq\|\Delta A\|\|y\|+\|\Delta b\| \leq \epsilon\left(\|E\|\|y\|+\left\|e_{b}\right\|\right) \rightarrow \epsilon \geq \frac{\|r\|}{D}
\end{gathered}
$$

Second: We need to show an instance where the minimum value of $\|r\| / D$ is reached. Take the pair $\Delta A, \Delta b$:

$$
\Delta A=\alpha r z^{T} ; \quad \Delta b=\beta r \quad \text { with } \alpha=\frac{\|E\|\|y\|}{D} ; \quad \beta=\frac{\left\|e_{b}\right\|}{D}
$$

The vector z depends on the norm used - for the 2-norm: $z=y /\|y\|^{2}$. Here: Proof only for 2-norm
a) We need to verify that first part of (1) is satisfied:

$$
\begin{aligned}
(A+\Delta A) y & =A y+\alpha r \frac{y^{T}}{\|y\|^{2}} y=b-r+\alpha r \\
& =b-(1-\alpha) r=b-\left(1-\frac{\|E\|\|y\|}{\|E\|\|y\|+\left\|e_{b}\right\|}\right) r \\
& =b-\frac{\left\|e_{b}\right\|}{D} r=b+\beta r \quad \rightarrow
\end{aligned}
$$

$$
(A+\Delta A) y=b+\Delta b \quad \leftarrow \text { The desired result }
$$

Finally: b) Must now verify that $\|\Delta A\|=\eta\|\boldsymbol{E}\|$ and $\|\Delta b\|=\eta\left\|e_{b}\right\|$. Exercise: Show that $\left\|\boldsymbol{u} \boldsymbol{v}^{T}\right\|_{2}=\|\boldsymbol{u}\|_{2}\|\boldsymbol{v}\|_{2}$

$$
\begin{aligned}
\|\Delta A\| & =\frac{|\alpha|}{\|y\|^{2}}\left\|r y^{T}\right\|=\frac{\|E\|\|y\|\|r\|\|y\|}{D} \frac{\|r\|}{\|y\|^{2}}=\eta\|E\| \\
\|\Delta b\| & =|\beta|\|r\|=\frac{\left\|e_{b}\right\|}{D}\|r\|=\eta\left\|e_{b}\right\| \quad Q E D
\end{aligned}
$$

