Show that each A_k [A(1:k, 1:k) in matlab notation] is SPD.

Solution: Let x be any vector in \mathbb{R}^k and consider the vector y of \mathbb{R}^n obtained by stacking x followed by n-k zeros. Then it can be easily seen that : $(A_k x, x) = (Ay, y)$ and since A is SPD then (Ay, y) > 0 and therefore $(A_k x, x) > 0$ for any x in \mathbb{R}^k . Hence A_k is SPD.

\swarrow_2 Consequence $\det(A_k) > 0$

Solution: This is because the determinant is the product of the eigenvalues which are real positive (see notes).

1 If A is SPD then for any $n \times k$ matrix X of rank k, the matrix $X^T A X$ is SPD.

Solution: For any $v \in \mathbb{R}^k$ we have $(X^T A X v, v) = (A X v, X v)$. In addition, since X is of full rank,

then Xv cannot be zero if v is nonzero. Therefore we have (AXv, Xv) > 0.

A Show that if
$$A^T = A$$
 and $(Ax, x) = 0 \ \forall x$ then $A = 0$.

Solution: The condition implies that for all x, y we have (A(x + y), x + y) = 0. Now expand this as: (Ax, x) + (Ay, y) + 2(Ax, y) = 0 for all x, y which shows that $(Ax, y) = 0 \forall x, y$. This implies that A = 0 (e.g. take $x = e_j, y = e_i$)...

Show: A nonzero matrix A is indefinite iff $\exists x, y : (Ax, x)(Ay, y) < 0$.

Solution:

 \leftarrow Trivial. The matrix cant be PSD or NSD under the conditon

→ Need to prove: If A is indefinite then there exist such that x, y : (Ax, x)(Ay, y) < 0. Assume contrary is true, i.e., $\forall x, y(Ax, x)(Ay, y) \ge 0$. There is at least one x_0 such that (Ax_0, x_0) is nonzero, otherwise A = 0 from previous question. Assume $(Ax_0, x_0) > 0$. Then $\forall y(Ax_0, x_0)(Ay, y) \ge 0$. which implies $\forall y : (Ay, y) \ge 0$, i.e., *A* is positive semi-definite. This contradicts the assumption that *A* is neither positive nor negative semi-defininte

\checkmark The (standard) LU factorization of an SPD matrix **A** exists.

Solution: This is an immediate consequence of the main theorem on existence (Lec. notes. set #5) and Exercise 1 in this set which showed that $det(A_k) > 0$ for $k = 1, \dots, n$.

Example:

$$A=egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

✓ 7 Is *A* symmetric positive definite?

Solution: Answer is yes because $det(A_k) > 0$ for k = 1, 2, 3.

Mat is the LDL^T factorization of A?

Solution: The LU factorizatis is:

$$L = egin{pmatrix} 1 & 0 & 0 \ -1 & 1 & 0 \ 2 & 1/2 & 1 \end{pmatrix} \qquad U = egin{pmatrix} 1 & -2 & 1 \ 0 & 4 & 2 \ 0 & 0 & 4 \end{pmatrix}$$

Therefore $A = LDL^T$ where L is as given above and

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad \Box$$

What is the Cholesky factorization of A ?

Solution: From the above LDLT factorization we have $A = GG^T$ with

$$G = egin{pmatrix} 1 & 0 & 0 \ -1 & 2 & 0 \ 2 & 1 & 2 \end{pmatrix}$$

Gradient of $\psi(x) = (Ax, x)$

In practice exercise # 6 it is asked: Let A be symmetric and $\psi(x) = (Ax, x)$. What is the partial derivative $\frac{\partial \psi(x)}{\partial x_k}$? What is the gradient of ψ ?

Solution: First note that

$$\psi(x) = \sum_{i=1}^n x_i \left[\sum_{j=1}^n a_{ij} x_j
ight]$$

and so, using basic rules for derivatives of products:

$$egin{aligned} rac{\partial\psi(x)}{\partial x_k} &= \sum\limits_{i=1}^n rac{\partial x_i}{\partial x_k} \left[\sum\limits_{j=1}^n a_{ij} x_j
ight] + \sum\limits_{i=1}^n x_i \left[rac{\partial x_i}{\partial x_k} \sum\limits_{j=1}^n a_{ij} x_j
ight] \ &= \sum\limits_{j=1}^n a_{kj} x_j + \sum\limits_{i=1}^n x_i a_{ik} \ &= 2 \sum\limits_{j=1}^n a_{kj} x_j \end{aligned}$$

which is nothing but twice the k-th component of Ax or $\frac{\partial \psi(x)}{\partial x_k} = 2(Ax)_k$. Therefore the gradient of ψ is

$$abla \psi(x) = 2Ax.$$

A somewhat simpler solution for finding the gradient is to expand $\psi(x+\delta) = (A(x+\delta), (x+\delta)) = ...$ and to write that the linear term should be of the form $[\nabla \psi]^T \delta$.