1 How would you get an orthonormal basis of \boldsymbol{X} ?

Solution: Just take any basis and orthonormalize it with Gram-Schmidt of Householder QR.

2 2 Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.

Solution: You first get any factorization in the form shown in Page 9-7 - Then to get an upper triangular \boldsymbol{C} you use the QR factorization $\boldsymbol{C}=\boldsymbol{Q} \boldsymbol{R}$. Then \boldsymbol{U} is replaced by

$$
U_{n e w}=U \times\left(\begin{array}{ll}
Q & 0 \\
0 & I
\end{array}\right)
$$

and \boldsymbol{C} is replaced by \boldsymbol{R}. To get a lower triangular \boldsymbol{C} you can use the same trick applied to $\boldsymbol{A}^{\boldsymbol{T}}$ and transpose
the final result.
\& 4 How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)?

Solution: You first get the Householder QR factorization $\boldsymbol{A}=Q_{1} \boldsymbol{R}_{1}$ of the matrix \boldsymbol{A}. The second step is to perform a Householder $Q R$ factorization of the matrix \boldsymbol{R}_{1}^{T}, so you will get: $\boldsymbol{R}_{1}^{T}=Q_{2} \boldsymbol{R}_{2}$. The final step is to write:

$$
A=Q_{1} * R_{2}^{T} * Q_{2}^{T} \equiv U R V^{T}
$$

where $\boldsymbol{U}=Q_{1} \in \mathbb{R}^{m \times m} ; \boldsymbol{V}=\boldsymbol{Q}_{2} \in \mathbb{R}^{n \times n} ; \boldsymbol{R}=\boldsymbol{R}_{2} \in \mathbb{R}^{m \times n} \square$
$\leftrightarrow 4$ In the proof of the SVD decomposition, define $\boldsymbol{U}, \boldsymbol{V}$ as single Householder reflectors.

Solution: We deal with \boldsymbol{U} only [proceed similarly with \boldsymbol{V}]. We need a matrix $\boldsymbol{P}=\boldsymbol{I}-\mathbf{2} \boldsymbol{w} \boldsymbol{w}^{\boldsymbol{T}}$ such that the first column of \boldsymbol{A} is \boldsymbol{u}_{1} and all columns are orthonormal. The second requirement is satisfied by default since \boldsymbol{P} is unitary. Note that if \boldsymbol{P} is available we will have $\boldsymbol{P} \boldsymbol{u}_{1}=\boldsymbol{e}_{1}$ because $\boldsymbol{P}^{2}=\boldsymbol{I}$. Therefore, the
wanted w is simply the vector that transforms the vector u_{1} into $\alpha e_{1} \ldots \square$
$\otimes_{0} 5$ How can you obtain the thin SVD from the QR factorization of \boldsymbol{A} and the SVD of an $\boldsymbol{n} \times \boldsymbol{n}$ matrix?

Solution: We first get the thin QR factorization of A, namely $A=Q R$ where $Q \in \mathbb{R}^{m \times n}$ and $R \in$ $\mathbb{R}^{n \times n}$; Then we can get the SVD $\boldsymbol{R}=\boldsymbol{U}_{\boldsymbol{R}} \Sigma \boldsymbol{V}_{\boldsymbol{R}}^{\boldsymbol{T}}$ of \boldsymbol{R} and this yields:

$$
A=Q \times U_{R} \Sigma_{R} V_{R}^{T} \rightarrow A=U \Sigma V^{T}, \quad \text { with } \quad U=Q \times U_{R} ; \quad \Sigma=\Sigma_{R} ; \quad V=V_{R}
$$

