THE SINGULAR VALUE DECOMPOSITION (Cont.)	
	Pseudo-inverse of an arbitrary matrix
The Pseudo-inverse	► Let $A = U \Sigma V^T$ which we rewrite as
Use of SVD for least-squares problems	$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \Sigma_1 & 0 \ 0 & 0 \end{aligned} \end{pmatrix} egin{pmatrix} egin{pmatrix} egin{aligned} egin{pmatrix} egin{aligned} egin{pmatrix} egin{matrix} egin{mat$
Application to regularization	
Numerical rank	► Then the pseudo inverse of A is: $A^{\dagger} = V_1 \Sigma_1^{-1} U_1^T = \sum_{j=1}^r \frac{1}{\sigma_j} v_j u_j^T$
	The pseudo-inverse of A is the mapping from a vector b to the (unique) Minumum Norm solution of the LS problem: $\min_x Ax - b _2^2$ – (to be shown)
	► In the full-rank overdetermined case, the normal equations yield $x = \underbrace{(A^T A)^{-1} A^T}_{A^{\dagger}} b$
	10-2 GvL 2.4, 5.4-5 – SVD1
 Least-squares problem via the SVD Problem: min_x b - Ax ₂ in general case. We want to: Find *all* possible least-squares solutions. Also find the one with min. 2-norm. SVD of A will play instrumental role in expressing solution 	1) Express x in V basis : $x = Vy = [V_1, V_2] \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ 2) Then left multiply by U^T to get $\ Ax - b\ _2^2 = \left\ \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} U_1^T b \\ U_2^T b \end{pmatrix} \right\ _2^2$ 3) Find all possible solutions in terms of $y = [y_1; y_2]$ $\ Ax - b\ _2 = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
► Write SVD of <i>A</i> as: $A = \begin{pmatrix} U_1 & U_2 \end{pmatrix} \begin{pmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} V_1^T \\ V_2^T \end{pmatrix} = \sum_{i=1}^r \sigma_i v_i u_i^T$	one has minimum norm?
10-3 GvL 2.4, 5.4-5 – SVD1	10-4 GvL 2.4, 5.4-5 – SVD1

Answer: From above, must have $y_1 = \Sigma_1^{-1} U_1^T b$ and y_2 = anything (free).	► Minimum norm solution to $\min_x \ Ax - b\ _2^2$ satisfies $\Sigma_1 y_1 = U_1^T b$, $y_2 = 0$.
Recall that: $x = [V_1, V_2] \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = V_1 y_1 + V_2 y_2$ $= V_1 \Sigma_1^{-1} U_1^T b + V_2 y_2$ $= A^{\dagger} b + V_2 y_2$ > Note: $A^{\dagger} b \in \operatorname{Ran}(A^T)$ and $V_2 y_2 \in \operatorname{Null}(A)$.	► It is: $x_{LS} = V_1 \Sigma_1^{-1} U_1^T b = A^{\dagger} b$ \swarrow_2 If $A \in \mathbb{R}^{m \times n}$ what are the dimensions of A^{\dagger} ?, $A^{\dagger}A$?, AA^{\dagger} ? \bowtie_3 Show that $A^{\dagger}A$ is an orthogonal projector. What are its range and null-space?
 ➤ Therefore: least-squares solutions are all of the form: A[†]b + w where w ∈ Null(A). ➤ Smallest norm when y₂ = 0, i.e., when w = 0. 	Zate questions for AA^{\dagger} .
10-5 GvL 2.4, 5.4-5 – SVD1	10-6 GvL 2.4, 5.4-5 – SVD1
Moore-Penrose Inverse	Least-squares problems and the SVD
The pseudo-inverse of A is given by $A^\dagger = V egin{pmatrix} \Sigma_1^{-1} & 0 \ 0 & 0 \end{pmatrix} U^T = \sum_{i=1}^r rac{v_i u_i^T}{\sigma_i}$	 ➤ The SVD can give much information on solutions of overdetermined and underdetermined linear systems. Let A be an m × n matrix and A = UΣV^T its SVD with r = rank(A), V = [v₁,,v_n] U = [u₁,,u_m]. Then
	$ v_1, \dots, v_n $
Moore-Penrose conditions:The pseudo inverse of a matrix is uniquely determined by these four conditions:(1) $AXA = A$ (2) $XAX = X$ (3) $(AX)^H = AX$ (4) $(XA)^H = XA$ > In the full-rank overdetermined case, $A^{\dagger} = (A^TA)^{-1}A^T$	$[v_1, \dots, v_n] \ U = [u_1, \dots, u_m].$ Then $x_{LS} = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} v_i$ minimizes $ b - Ax _2$ and has the smallest 2-norm among all possible minimizers. In addition, $ ho_{LS} \equiv b - Ax_{LS} _2 = z _2$ with $z = [u_{r+1}, \dots, u_m]^T b$
The pseudo inverse of a matrix is uniquely determined by these four conditions: (1) $AXA = A$ (2) $XAX = X$ (3) $(AX)^{H} = AX$ (4) $(XA)^{H} = XA$	$x_{LS} = \sum_{i=1}^r \frac{u_i^T b}{\sigma_i} v_i$ minimizes $ b-Ax _2$ and has the smallest 2-norm among all possible minimizers. In addition,

Least-squares problems and pseudo-inverses $A = egin{pmatrix} 1 & 0 & 2 & 0 \ 0 & 0 & -2 & 1 \end{pmatrix}$ **∠**5 Consider the matrix: > A restatement of the first part of the previous result: Consider the general linear least-squares problem • Compute the thin SVD of A $\min_{x \in S} \|x\|_2, \;\;\; S = \{x \in \; \mathbb{R}^n \; | \; \|b - Ax\|_2 \min \}.$ • Find the matrix B of rank 1 which is the closest to the above matrix in the 2-norm sense. This problem always has a unique solution given by • What is the pseudo-inverse of A? $x = A^{\dagger}b$ • What is the pseudo-inverse of B? • Find the vector x of smallest norm which minimizes $||b - Ax||_2$ with $b = (1, 1)^T$ • Find the vector x of smallest norm which minimizes $||b - Bx||_2$ with $b = (1, 1)^T$ GvL 2.4, 5.4-5 - SVD1 GvL 2.4, 5.4-5 - SVD1 10-9 10-10 **Remedy:** SVD regularization Ill-conditioned systems and the SVD \blacktriangleright Let A be $m \times m$ and $A = U\Sigma V^T$ its SVD Truncate the SVD by only keeping the $\sigma'_i s$ that are $\geq \tau$, where τ is a threshold Solution of Ax = b is $x = A^{-1}b = \sum_{i=1}^m rac{u_i^T b}{\sigma_i} v_i$ Gives the Truncated SVD solution (TSVD solution:) $x_{TSVD} = \sum_{n \sim -\infty} rac{u_i^T b}{\sigma_i} v_i$ > When A is very ill-conditioned, it has many small singular values. The division by these small σ_i 's will amplify any noise in the data. If $\tilde{b} = b + \epsilon$ then Many applications [e.g., Image and signal processing,..] $egin{aligned} egin{aligned} egin{aligned} egin{aligned} A^{-1} ilde{b} &= \sum_{i=1}^m rac{u_i^T b}{\sigma_i} \, v_i + \sum_{i=1}^m rac{u_i^T \epsilon}{\sigma_i} \, v_i \end{aligned}$ ≻ Result: solution could be completely meaningless. GvL 2.4, 5.4-5 - SVD1 10-12 GvL 2.4, 5.4-5 - SVD1 10-11

Numerical rank and the SVD

> Assuming the original matrix A is exactly of rank k the computed SVD of A will be the SVD of a nearby matrix A + E – Can show: $|\hat{\sigma}_i - \sigma_i| \le \alpha \sigma_1 \underline{\mathbf{u}}$

 \blacktriangleright Result: zero singular values will yield small computed singular values and r larger sing. values.

> Reverse problem: *numerical rank* – The ϵ -rank of A :

 $r_{\epsilon} = \min\{rank(B) : B \in \mathbb{R}^{m imes n}, \|A - B\|_2 \le \epsilon\},$

26 Show that r_{ϵ} equals the number sing. values that are $>\epsilon$

Matrix Show: r_{ϵ} equals the number of columns of A that are linearly independent for any perturbation of A with norm $\leq \epsilon$.

Pseudo inverses of full-rank matrices

Case 1: $m \geq n$ Then $A^{\dagger} = (A^T A)^{-1} A^T$

► Thin SVD is $A = U_1 \Sigma_1 V_1^T$ and V_1, Σ_1 are $n \times n$. Then:

$$(A^T A)^{-1} A^T = (V_1 \Sigma_1^2 V_1^T)^{-1} V_1 \Sigma_1 U_1^T \ = V_1 \Sigma_1^{-2} V_1^T V_1 \Sigma_1 U_1^T \ = V_1 \Sigma_1^{-1} U_1^T \ = A^\dagger$$

GvL 2.4, 5.4-5 - SVD1

Example: Pseudo-inverse of $\begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & -1 \\ 0 & 1 \end{pmatrix}$ is?

Case 2: m < n Then $A^{\dagger} = A^T (A A^T)^{-1}$

> Practical problem : How to set ϵ ?

> Thin SVD is $A = U_1 \Sigma_1 V_1^T$. Now U_1, Σ_1 are $m \times m$ and:

$$\begin{aligned} A^{T}(AA^{T})^{-1} &= V_{1}\Sigma_{1}U_{1}^{T}[U_{1}\Sigma_{1}^{2}U_{1}^{T}]^{-1} \\ &= V_{1}\Sigma_{1}U_{1}^{T}U_{1}\Sigma_{1}^{-2}U_{1}^{T} \\ &= V_{1}\Sigma_{1}\Sigma_{1}^{-2}U_{1}^{T} \\ &= V_{1}\Sigma_{1}^{-1}U_{1}^{T} \\ &= A^{\dagger} \end{aligned}$$

Example: Pseudo-inverse of $\begin{pmatrix} 0 & 1 & 2 & 0 \\ 1 & 2 & -1 & 1 \end{pmatrix}$ is?

► Mnemonic: The pseudo inverse of A is A^T completed by the inverse of the smaller of $(A^TA)^{-1}$ or $(AA^T)^{-1}$ where it fits (i.e., left or right)

GvL 2.4, 5.4-5 - SVD1

GvL 2.4, 5.4-5 - SVD1

10-14

10-15

10-13