A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank matrix before attempting to solve the original problem

- Regularization methods require the solution of a least-squares linear system Ax = b approximately in the dominant singular space of A
- > The Latent Semantic Indexing (LSI) method in information retrieval, performs the "query" in the dominant singular space of A
- Methods utilizing Principal Component Analysis, e.g. Face Recognition.

Commonality: Approximate A (or A^{\dagger}) by a lower rank approximation A_k (using dominant singular space) before solving original problem.

► This approximation captures the main features of the data while getting rid of noise and redundancy

Note: Common misconception: 'we need to reduce dimension in order to reduce computational cost'. In reality: using less information often yields better results. This is the problem of overfitting.

Good illustration: Information Retrieval (IR)

Information Retrieval: Vector Space Model

 \blacktriangleright Given: a collection of documents (columns of a matrix A) and a query vector q.

> Collection represented by an $m \times n$ term by document matrix with $a_{ij} = L_{ij}G_iN_j$

> Queries ('pseudo-documents') q are represented similarly to a column

Vector Space Model - continued

- > Problem: find a column of A that best matches q
- > Similarity metric: angle between the column and q Use cosines:

 $\frac{|c^T q|}{\|c\|_2 \|q\|_2}$

To rank all documents we need to compute

$$s = A^T q$$

 \blacktriangleright s = similarity vector.

Literal matching – not very effective.

Use of the SVD

- Many problems with literal matching: polysemy, synonymy, ...
- ► Need to extract intrinsic information or underlying "semantic" information –

Solution (LSI): replace matrix A by a low rank approximation using the Singular Value Decomposition (SVD)

$$A = U \Sigma V^T \quad o \quad A_k = U_k \Sigma_k V_k^T$$

- \succ U_k : term space, V_k : document space.
- Refer to this as Truncated SVD (TSVD) approach

New similarity vector:

$$s_k = A_k^T q = V_k \Sigma_k U_k^T q$$

Issues:

- > Problem 1: How to select k?
- Problem 2: computational cost (memory + computation)
- Problem 3: updates [e.g. google data changes all the time]
- Not practical for very large sets

LSI : an example

88	D1	:	INFANT & TODLER first aid
88	D2	:	BABIES & CHILDREN's room for your HOME
%%	D3	:	CHILD SAFETY at HOME
8 8	D4	:	Your BABY's HEALTH and SAFETY
88		:	From INFANT to TODDLER
88	D5	:	BABY PROOFING basics
88	D6	:	Your GUIDE to easy rust PROOFING
88	D7	:	Beanie BABIES collector's GUIDE
88 8	D8	:	SAFETY GUIDE for CHILD PROOFING your HOME
886	58889	8888	;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
88	TERN	4S:	1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME
88			6:INFANT 7:PROOFING 8:SAFETY 9:TODDLER
8 8 8	Sou	rce:	Berry and Browne, SIAM., '99

> Number of documents: 8

> Number of terms: 9

		d1	d 2	d 3	d 4	d5	d 6	d 7	d 8	
	A =		1		1	1		1		bab
			1	1					1	chi
							1	1	1	gui
Baw matrix (before scaling):					1					hea
			1	1					1	hom
		1			1					inf
						1	1		1	pro
				1	1				1	saf
		1			1					tod

Mol Get the anwser to the query Child Safety, so

 $q = [0\ 1\ 0\ 0\ 0\ 0\ 1\ 0]$

using cosines and then using LSI with k = 3.

Dimensionality Reduction (DR) techniques pervasive to many applications

Often main goal of dimension reduction is not to reduce computational cost. Instead:

- Dimension reduction used to reduce noise and redundancy in data
- Dimension reduction used to discover patterns (e.g., supervised learning)

► Techniques depend on desirable features or application: Preserve angles? Preserve distances? Maximize variance? ..

The problem

- > Given $d \ll m$ find a mapping
- $\Phi: x \in \mathbb{R}^m \longrightarrow y \in \mathbb{R}^d$
- > Mapping may be explicit (e.g., $y = V^T x$)
- Or implicit (nonlinear)

Find a low-dimensional representation $Y \in \mathbb{R}^{d \times n}$ of $X \in \mathbb{R}^{m \times n}$.

► Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

11-10

Example: Digit images (a sample of 30)

A few 2-D 'reductions':

Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, \ldots, x_n]$, and *d* the dimension of the desired reduced space *Y*.

Want: a linear transformation from X to Y

11-13

> *m*-dimens. objects (x_i) 'flattened' to *d*-dimens. space (y_i)

Problem: Find the best such mapping (optimization) given that the y_i 's must satisfy certain constraints

Principal Component Analysis (PCA)

> PCA: find V (orthogonal) so that projected data $Y = V^T X$ has maximum variance

> Maximize over all orthogonal $m \times d$ matrices V:

$$\sum_{i} \left\| y_i - rac{1}{n} \sum_{j} y_j
ight\|_2^2 = \dots = \operatorname{Tr} \left[V^{ op} ar{X} ar{X}^{ op} V
ight]$$

Where: $\bar{X} = [\bar{x}_1, \cdots, \bar{x}_n]$ with $\bar{x}_i = x_i - \mu$, $\mu =$ mean.

Solution: $V = \{$ dominant eigenvectors $\}$ of covariance matrix

▶ i.e., Optimal V = Set of left singular vectors of \overline{X} associated with d largest singular values.

Show that $\bar{X} = X(I - \frac{1}{n}ee^T)$ (here e = vector of all ones). What does the projector $(I - \frac{1}{n}ee^T)$ do?

Show that solution V also minimizes 'reconstruction error' ...

$$\sum_{i} \|ar{x}_{i} - VV^{T}ar{x}_{i}\|^{2} = \sum_{i} \|ar{x}_{i} - Var{y}_{i}\|^{2}$$

🖾 4 .. and that it also maximizes $\sum_{i,j} \|y_i - y_j\|^2$

Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming commonality (low rank matrix).

	predictions							
movie	Paul	Jane	Ann	Paul	Jane	Ann		
Title-1	-1	3	-1	-1.2	1.7	-0.7		
Title-2	4	X	3	2.8	-1.2	2.5		
Title-3	-3	1	-4	-2.7	1.0	-2.5		
Title-4	X	-1	-1	-0.5	-0.3	-0.6		
Title-5	3	-2	1	1.8	-1.4	1.4		
Title-6	-2	3	X	-1.6	1.8	-1.2		
		A		X				

Minimize $||(X - A)_{mask}||_F^2 + \mu ||X||_*$ "minimize sum-of-squares of deviations from known ratings plus sum of singular values of solution (to reduce the rank)."