EIGENVALUE PROBLEMS • Background on eigenvalues/ eigenvectors / decompositions • Perturbation analysis, condition numbers • Power method • The QR algorithm • Practical QR algorithms: use of Hessenberg form and shifts	Eigenvalue Problems. IntroductionLet A an $n \times n$ real nonsymmetric matrix. The eigenvalue problem: $Ax = \lambda x$ $\lambda \in \mathbb{C}$: eigenvalue $x \in \mathbb{C}^n$: eigenvectorTypes of Problems:
• The symmetric eigenvalue problem.	 Compute a few λ_i 's with smallest or largest real parts; Compute all λ_i's in a certain region of C; Compute a few of the dominant eigenvalues; Compute all λ_i's.
Eigenvalue Problems. Their origins• Structural Engineering $[Ku = \lambda Mu]$ • Stability analysis [e.g., electrical networks, mechanical system,]• Bifurcation analysis [e.g., in fluid flow]	Basic definitions and properties A complex scalar λ is called an eigenvalue of a square matrix A if there exists a nonzero vector u in \mathbb{C}^n such that $Au = \lambda u$. The vector u is called an eigenvector of A associated with λ . The set of all eigenvalues of A is the 'spectrum' of A . Notation: $\Lambda(A)$.
 Electronic structure calculations [Schrödinger equation] Applications of new era: page rank (of the world-wide web) and many types of dimension reduction (SVD instead of eigenvalues) 	 λ is an eigenvalue iff the columns of A – λI are linearly dependent. equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector w such that w^H(A – λI) = 0 w is a left eigenvector of A (u= right eigenvector) λ is an eigenvalue iff det(A – λI) = 0

Basic definitions and properties (cont.)

> An eigenvalue is a root of the Characteristic polynomial:

 $p_A(\lambda) = \det(A - \lambda I)$

- > So there are n eigenvalues (counted with their multiplicities).
- > The multiplicity of these eigenvalues as roots of p_A are called algebraic multiplicities.
- > The geometric multiplicity of an eigenvalue λ_i is the number of linearly independent eigenvectors associated with λ_i .

- \blacktriangleright Geometric multiplicity is \leq algebraic multiplicity.
- > An eigenvalue is simple if its (algebraic) multiplicity is one.
- > It is semi-simple if its geometric and algebraic multiplicities are equal.

✓ 1 Consider

$$A = \begin{pmatrix} 1 & 2 & -4 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Eigenvalues of *A*? their algebraic multiplicities? their geometric multiplicities? Is one a semi-simple eigenvalue?

Same questions if a_{33} is replaced by one.

M₃ Same questions if, in addition, a_{12} is replaced by zero.

12-5	GvL 7.1-7.4,7.5.2 – Eigen 12-6	GvL 7.1-7.4,7.5.2 – Eigen
Two matrices A and B are similar if there exists a nonsi that	ngular matrix X such	nsformations that preserve eigenvectors
$A = XBX^{-1}$	Shift	$B = A - \sigma I$: $Av = \lambda v \iff Bv = (\lambda - \sigma)v$ eigenvalues move, eigenvectors remain the same.
► $Av = \lambda v \iff B(X^{-1}v) = \lambda(X^{-1}v)$ eigenvalues remain the same, eigenvectors transformed.	Polyne	$\begin{array}{ll} \text{omial} B=p(A)=\alpha_0I+\cdots+\alpha_nA^n; \ Av=\lambda v \Longleftrightarrow Bv=p(\lambda)v\\ \text{eigenvalues transformed, eigenvectors remain the same.} \end{array}$
Issue: find X so that B has a simple structure Definition: A is diagonalizable if it is similar to a diagonal r	Invert	$B = A^{-1}$: $Av = \lambda v \iff Bv = \lambda^{-1}v$ eigenvalues inverted, eigenvectors remain the same.
THEOREM: A matrix is diagonalizable iff it has n lineigenvectors	nearly independent Shift & Invert	$B = (A - \sigma I)^{-1}: Av = \lambda v \iff Bv = (\lambda - \sigma)^{-1}v$ eigenvalues transformed, eigenvectors remain the same. spacing between eigenvalues can be radically changed.
iff all its eigenvalues are semi-simple		
\succ iff its eigenvectors form a basis of \mathbb{R}^n	GvL 7.1-7.4,7.5.2 – Eigen 12-8	GvL 7.1-7.4,7.5.2 – Eigen

 form is real diagonal). It is easy to read of triangular matrix <i>R</i> 	t is unitarily similar to a real diagonal matrix, (i.e. its Schur ff the eigenvalues (including all the multiplicities) from the obtained by back-solving	There is a unitary transformation P such that $Px = e_1$. How do you define P ? Show that $PAP^H = \left(\frac{\lambda}{0} **\\ 0 A_2\right)$. Apply process recursively to A_2 . B What happens if A is Hermitian? Another proof altogether: use Jordan form of A and QR factorization
12-9	GvL 7.1-7.4,7.5.2 – Eigen	12-10 GvL 7.1-7.4,7.5.2 – Eigen
Localization theore	ms and perturbation analysis	More refined result: Gerschgorin
Localization: where a	are the eigenvalues located in \mathbb{C} ?	THEOREM [Gerschgorin]
Perturbation analysis about an eigenvector?	s: If A is perturbed how does an eigenvalue change? How	$orall \lambda \ \in \Lambda(A), \ \ \exists \ i \ \ ext{such that} \ \ \lambda-a_{ii} \leq \sum_{\substack{j=1\ j eq i}}^{j=n} a_{ij} \ .$
Also: sensitivity of an	eigenvalue to perturbations]≠*
Next result is a "local	ization" theorem	> In words: eigenvalue λ is located in one of the closed discs of the complex plane
We have seen one sub-	uch result before. Let $\ .\ $ be a matrix norm.	centered at a_{ii} and with radius $ ho_i \ = \ \sum_{j \ eq \ i} a_{ij} $.
Then:	$orall \lambda \ \in \Lambda(A) : \lambda \leq \ A\ $	
 All eigenvalues are lo 	ocated in a disk of radius $\ A\ $ centered at 0.	
12-11	GvL 7.1-7.4,7.5.2 – Eigen	12-12 GvL 7.1-7.4,7.5.2 – Eigen

Schur Form – Proof

with $\|x\|_2 = 1$

And Show that there is at least one eigenvalue and eigenvector of A: $Ax = \lambda x$,

> THEOREM (Schur form): Any matrix is unitarily similar to a triangular matrix,

i.e., for any A there exists a unitary matrix Q and an upper triangular matrix R

 $A = QRQ^H$

such that

Proof: By contradiction. If contrary is true then there is one eigenvalue λ that does not belong to any of the disks, i.e., such that $ \lambda - a_{ii} > \rho_i$ for all <i>i</i> . Write matrix $A - \lambda I$ as: $A - \lambda I = D - \lambda I - [D - A] \equiv (D - \lambda I) - F$ where <i>D</i> is the diagonal of <i>A</i> and $-F = -(D - A)$ is the matrix of off-diagonal entries. Now write $A - \lambda I = (D - \lambda I)(I - (D - \lambda I)^{-1}F).$ From assumptions we have $ (D - \lambda I)^{-1}F _{\infty} < 1$. (Show this). The Lemma in P. 5-3 of notes would then show that $A - \lambda I$ is nonsingular – a contradiction \Box	 Gerschgorin's theorem - example ▲ In Find a region of the complex plane where the eigenvalues of the following matrix are located: A =
12-13 GvL 7.1-7.4,7.5.2 – Eigen	12-14 GvL 7.1-7.4,7.5.2 – Eigen
Bauer-Fike theorem	Conditioning of Eigenvalues
THEOREM [Bauer-Fike] Let $\tilde{\lambda}$, \tilde{u} be an approximate eigenpair with $\ \tilde{u}\ _2 = 1$, and let $r = A\tilde{u} - \tilde{\lambda}\tilde{u}$ ('residual vector'). Assume A is diagonalizable: $A = XDX^{-1}$, with D diagonal. Then $\exists \lambda \in \Lambda(A)$ such that $ \lambda - \tilde{\lambda} \leq \operatorname{cond}_2(X) \ r\ _2$.	Assume that λ is a simple eigenvalue with right and left eigenvectors u and w^H respectively. Consider the matrices: $A(t) = A + tE$ Eigenvalue $\lambda(t)$, Eigenvector $u(t)$.
 Very restrictive result - also not too sharp in general. Alternative formulation. If <i>E</i> is a perturbation to <i>A</i> then for any eigenvalue λ̃ of <i>A</i> + <i>E</i> there is an eigenvalue λ of <i>A</i> such that: λ - λ̃ ≤ cond₂(X) E ₂. 	Conditioning of λ of A relative to E is $\left \frac{d\lambda(t)}{dt}\right _{t=0}$. Write $A(t)u(t) = \lambda(t)u(t)$ Then multiply both sides to the left by w^H : $w^H(A + tE)u(t) = \lambda(t)w^Hu(t) \rightarrow$ $\lambda(t)w^Hu(t) = w^HAu(t) + tw^HEu(t)$ $= \lambda w^Hu(t) + tw^HEu(t).$
12-15 GvL 7.1-7.4,7.5.2 – Eigen	12-16 GvL 7.1-7.4,7.5.2 – Eigen

$$\rightarrow \frac{\lambda(t) - \lambda}{t} w^{tr} u(t) = w^{tr} Eu(t)$$

$$Take the limit at t = 0, \qquad \lambda'(0) = \frac{w^{tr} Eu}{w^{tr} u}$$

$$\lambda'(0) = \frac{w^{tr} Eu}{w^{tr} u}$$

$$\lambda(0) = \frac{1}{(u, w)}$$

$$\lambda'(0) = \frac{1}{(u, w)}$$

So:

_

Basic algorithm: The power method

▶ Basic idea is to generate the sequence of vectors $A^k v_0$ where $v_0 \neq 0$ – then normalize.

► Most commonly used normalization: ensure that the largest component of the approximation is equal to one.

The Po	ower Method
1.	Choose a nonzero initial vector $v^{(0)}$.
2.	For $k = 1, 2, \ldots$, until convergence, Do:
3.	$lpha_k = rgmax_{i=1,,n} (Av^{(k-1)})_i onumber \ v^{(k)} = rac{1}{lpha} Av^{(k-1)}$
4.	$v^{(k)}=rac{1}{lpha_k}Av^{(k-1)}$
5.	EndDo

$$\blacktriangleright$$
 Note that $A^k u_i = \lambda_i^k u_i$

$$egin{aligned} v^{(k)} &= rac{1}{scaling} \, imes \, \sum_{i=1}^n \lambda_i^k \gamma_i u_i \ &= rac{1}{scaling} \, imes \, \left[\lambda_1^k \gamma_1 u_1 + \sum_{i=2}^n \lambda_i^k \gamma_i^k u_i
ight] \ &= rac{1}{scaling'} \, imes \, \left[u_1 + \sum_{i=2}^n \left(rac{\lambda_i}{\lambda_1}
ight)^k rac{\gamma_i}{\gamma_1} u_i
ight] \end{aligned}$$

- Second term inside bracket converges to zero. QED
- > Proof suggests that the convergence factor is given by

$$ho_D = rac{|m{\lambda}_2|}{|m{\lambda}_1|}$$

where λ_2 is the second largest eigenvalue in modulus.

12-23

Convergence of the power method

THEOREM Assume there is one eigenvalue λ_1 of A, s.t. $|\lambda_1| > |\lambda_j|$, for $j \neq i$, and that λ_1 is semi-simple. Then either the initial vector $v^{(0)}$ has no component in Null $(A - \lambda_1 I)$ or $v^{(k)}$ converges to an eigenvector associated with λ_1 and $\alpha_k \rightarrow \lambda_1$.

Proof in the diagonalizable case.

> $v^{(k)}$ is = vector $A^k v^{(0)}$ normalized by a certain scalar $\hat{\alpha}_k$ in such a way that its largest component is 1.

> Decompose initial vector $v^{(0)}$ in the eigenbasis as:

		n	
$v^{(0)}$	_	Γ	~
U	—	\square	$\gamma_i u_i$
		i=1	

> Each u_i is an eigenvector associated with λ_i .

GvL 7.1-7.4,7.5.2 – Eigen

Example: Consider a 'Markov Chain' matrix of size n = 55. Dominant eigenvalues are $\lambda = 1$ and $\lambda = -1 >$ the power method applied directly to A fails. (Why?)

> We can consider instead the matrix I + A The eigenvalue $\lambda = 1$ is then transformed into the (only) dominant eigenvalue $\lambda = 2$

Iteration	Norm of diff.	Res. norm	Eigenvalue
20	0.639D-01	0.276D-01	1.02591636
40	0.129D-01	0.513D-02	1.00680780
60	0.192D-02	0.808D-03	1.00102145
80	0.280D-03	0.121D-03	1.00014720
100	0.400D-04	0.174D-04	1.00002078
120	0.562D-05	0.247D-05	1.00000289
140	0.781D-06	0.344D-06	1.00000040
161	0.973D-07	0.430D-07	1.0000005

12-24

12-22

The Shifted Power Method

► In previous example shifted A into B = A + I before applying power method. We could also iterate with $B(\sigma) = A + \sigma I$ for any positive σ

Example: With $\sigma = 0.1$ we get the following improvement.

Iteration	Norm of diff.	Res. Norm	Eigenvalue
20	0.273D-01	0.794D-02	1.00524001
40	0.729D-03	0.210D-03	1.00016755
60	0.183D-04	0.509D-05	1.00000446
80	0.437D-06	0.118D-06	1.00000011
88	0.971D-07	0.261D-07	1.00000002

- > Question: What is the best shift-of-origin σ to use?
- > Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:

$$\lambda_1 > \lambda_2 \geq \lambda_2 \geq \cdots \geq \lambda_n,$$

Then: If we shift A to $A - \sigma I$:

The shift σ that yields the best convergence factor is:

$$\sigma_{opt} = rac{\lambda_2 + \lambda_n}{2}$$

Plot a typical convergence factor $\phi(\sigma)$ as a function of σ . Determine the minimum value and prove the above result.

12-25	GvL 7.1-7.4,7.5.2 – Eigen
Inverse Iteration	
Observation: The eigenvectors of A and A^{-1} are identical.	
> Idea: use the power method on A^{-1} .	
 Will compute the eigenvalues closest to zero. 	
> Shift-and-invert Use power method on $(A - \sigma I)^{-1}$.	
> will compute eigenvalues closest to σ .	
 Rayleigh-Quotient Iteration: use σ = ^{v^TAv}/_{v^Tv} (best approximation to λ given v). 	
 Advantages: fast convergence in general. 	
> Drawbacks: need to factor A (or $A - \sigma I$) into LU.	
12-27	GvL 7.1-7.4,7.5.2 – Eigen