
The QR algorithm

ä The most common method for solving small (dense) eigenvalue problems. The
basic algorithm:

QR without shifts

1. Until Convergence Do:
2. Compute the QR factorization A = QR

3. Set A := RQ

4. EndDo

ä “Until Convergence” means “UntilA becomes close enough to an upper triangular
matrix”

ä Note: Anew = RQ = QH(QR)Q = QHAQ

ä Anew is Unitarily similar to A → Spectrum does not change
13-1 GvL 8.1-8.2.3 – Eigen2

13-1

ä Convergence analysis complicated – but insight: we are implicitly doing a QR
factorization of Ak:

QR-Factorize: Multiply backward:
Step 1 A0 = Q0R0 A1 = R0Q0

Step 2 A1 = Q1R1 A2 = R1Q1

Step 3: A2 = Q2R2 A3 = R2Q2 Then:

[Q0Q1Q2][R2R1R0] = Q0Q1A2R1R0

= Q0(Q1R1)(Q1R1)R0

= Q0A1A1R0, A1 = R0Q0→
= (Q0R0)︸ ︷︷ ︸

A

(Q0R0)︸ ︷︷ ︸
A

(Q0R0)︸ ︷︷ ︸
A

= A3

ä [Q0Q1Q2][R2R1R0] == QR factorization of A3

ä This helps analyze the algorithm (details skipped)

13-2 GvL 8.1-8.2.3 – Eigen2

13-2

ä Above basic algorithm is never used as is in practice. Two variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix

13-3 GvL 8.1-8.2.3 – Eigen2

13-3

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by
|λn|
|λn−1|

ä We will now consider only the real symmetric case.

ä Eigenvalues are real.

ä A(k) remains symmetric throughout process.

ä As k goes to infinity the last column and row (except a(k)
nn) converge to zero

quickly.,,

ä and a(k)
nn converges to lowest eigenvalue.

13-4 GvL 8.1-8.2.3 – Eigen2

13-4

A(k) =



. a

. a

. a

. a

. a

a a a a a a


ä Idea: Apply QR algorithm to A(k) − µI with µ = a(k)

nn. Note: eigenvalues of
A(k)− µI are shifted by µ (eigenvectors unchanged).→ Shift matrix by +µI after
iteration.

13-5 GvL 8.1-8.2.3 – Eigen2

13-5

QR with shifts

1. Until row ain, 1 ≤ i < n converges to zero DO:
2. Obtain next shift (e.g. µ = ann)
3. A− µI = QR

5. Set A := RQ+ µI

6. EndDo

ä Convergence (of last row) is cubic at the limit! [for symmetric case]

13-6 GvL 8.1-8.2.3 – Eigen2

13-6

ä Result of algorithm:

A(k) =



.

.

.

.

.

0 0 0 0 0 λn


ä Next step: deflate, i.e., apply above algorithm to (n− 1)× (n− 1) upper block.

13-7 GvL 8.1-8.2.3 – Eigen2

13-7

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aij = 0 for i > j + 1

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in
symmetric case). Results in substantial savings.

Transformation to Hessenberg form

ä Want H1AH
T
1 = H1AH1 to have the

form shown on the right

ä Consider the first step only on a 6×6 matrix



? ? ? ? ? ?

? ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?


13-8 GvL 8.1-8.2.3 – Eigen2

13-8

ä Choose a w in H1 = I − 2wwT to make the first column have zeros from
position 3 to n. So w1 = 0.

ä Apply to left: B = H1A

ä Apply to right: A1 = BH1.

Main observation: the Householder matrixH1 which transforms the columnA(2 :

n, 1) into e1 works only on rows 2 to n. When applying the transpose H1 to the
right of B = H1A, we observe that only columns 2 to n will be altered. So the
first column will retain the desired pattern (zeros below row 2).

ä Algorithm continues the same way for columns 2, ...,n− 2.

13-9 GvL 8.1-8.2.3 – Eigen2

13-9

QR for Hessenberg matrices

ä Need the “Implicit Q theorem”

Suppose thatQTAQ is an unreduced upper Hessenberg matrix. Then columns 2

to n of Q are determined uniquely (up to signs) by the first column of Q.

ä In other words if V TAV = G and QTAQ = H are both Hessenberg and
V (:, 1) = Q(:, 1) then V (:, i) = ±Q(:, i) for i = 2 : n.

Implication: To compute Ai+1 = QT
i AQi we can:

ä Compute 1st column of Qi [== scalar×A(:, 1)]

ä Choose other columns so Qi = unitary, and Ai+1 = Hessenberg.

13-10 GvL 8.1-8.2.3 – Eigen2

13-10

ä W’ll do this with Givens rotations:

Example: With n = 5 :
A =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


1. Choose G1 = G(1, 2, θ1) so that (GT

1A0)21 = 0

ä A1 = GT
1AG1 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
+ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗



13-11 GvL 8.1-8.2.3 – Eigen2

13-11

2. Choose G2 = G(2, 3, θ2) so that (GT
2A1)31 = 0

ä A2 = GT
2A1G2 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 + ∗ ∗ ∗
0 0 0 ∗ ∗


3. Choose G3 = G(3, 4, θ3) so that (GT

3A2)42 = 0

ä A3 = GT
3A2G3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 + ∗ ∗



13-12

4. Choose G4 = G(4, 5, θ4) so that (GT
4A3)53 = 0

ä A4 = GT
4A3G4 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗


ä Process known as “Bulge chasing”

ä Similar idea for the symmetric (tridiagonal) case

13-13 GvL 8.1-8.2.3 – Eigen2

13-13

