The QR algorithm

► The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR without shifts

- 1. Until Convergence Do:
- 2. Compute the QR factorization A = QR
- 3. Set A := RQ
- 4. EndDo

"Until Convergence" means "Until A becomes close enough to an upper triangular matrix"

► Note: $A_{new} = RQ = Q^H(QR)Q = Q^HAQ$

 A_{new} is Unitarily similar to $A \rightarrow$ Spectrum does not change

GvL 8.1-8.2.3 – Eigen2

13-1

> Convergence analysis complicated – but insight: we are implicitly doing a QR factorization of A^k :

	QR-Factorize:	Multiply backward:
Step 1	$oldsymbol{A}_0 = oldsymbol{Q}_0 oldsymbol{R}_0$	$oldsymbol{A}_1 = oldsymbol{R}_0 oldsymbol{Q}_0$
Step 2	$oldsymbol{A}_1 = oldsymbol{Q}_1 oldsymbol{R}_1$	$\boldsymbol{A}_2 = \boldsymbol{R}_1 \boldsymbol{Q}_1$
Step 3:	$oldsymbol{A}_2 = oldsymbol{Q}_2oldsymbol{R}_2$	$A_3 = R_2 Q_2$ Then:

 $egin{aligned} & [Q_0Q_1Q_2][R_2R_1R_0] \,=\, Q_0Q_1A_2R_1R_0 \ & =\, Q_0(Q_1R_1)(Q_1R_1)R_0 \ & =\, Q_0A_1A_1R_0, \qquad A_1=R_0Q_0
ightarrow \ & =\, \underbrace{(Q_0R_0)}_A \, \underbrace{(Q_0R_0)}_A \, \underbrace{(Q_0R_0)}_A \, \underbrace{(Q_0R_0)}_A \, =\, A^3 \end{aligned}$

 \blacktriangleright $[Q_0Q_1Q_2][R_2R_1R_0] == QR$ factorization of A^3

This helps analyze the algorithm (details skipped)

> Above basic algorithm is never used as is in practice. Two variations:

(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix

Practical QR algorithms: Shifts of origin

<u>Observation</u>: (from theory): Last row converges fastest. Convergence is dictated by $\frac{|\lambda_n|}{|\lambda_{n-1}|}$

> We will now consider only the real symmetric case.

- Eigenvalues are real.
- > $A^{(k)}$ remains symmetric throughout process.

> As k goes to infinity the last column and row (except $a_{nn}^{(k)}$) converge to zero quickly.,,

> and $a_{nn}^{(k)}$ converges to lowest eigenvalue.

► Idea: Apply QR algorithm to $A^{(k)} - \mu I$ with $\mu = a_{nn}^{(k)}$. Note: eigenvalues of $A^{(k)} - \mu I$ are shifted by μ (eigenvectors unchanged). \rightarrow Shift matrix by $+\mu I$ after iteration.

QR with shifts

- 1. Until row a_{in} , $1 \le i < n$ converges to zero DO:
- 2. Obtain next shift (e.g. $\mu = a_{nn}$)
- 3. $A \mu I = QR$
- 5. Set $A := RQ + \mu I$
- 6. EndDo
- Convergence (of last row) is cubic at the limit! [for symmetric case]

> Next step: deflate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper block.

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

 $a_{ij}=0$ for i>j+1

<u>Observation</u>: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form

- > Want $H_1AH_1^T = H_1AH_1$ to have the form shown on the right
- \blacktriangleright Consider the first step only on a 6×6 matrix

(*	*	*	*	*	*
*	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*
0	*	*	*	*	*

► Choose a w in $H_1 = I - 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.

- > Apply to left: $B = H_1 A$
- > Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column A(2: n, 1) into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

> Algorithm continues the same way for columns 2, ...,n - 2.

Need the "Implicit Q theorem"

Suppose that $Q^T A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

In other words if $V^T A V = G$ and $Q^T A Q = H$ are both Hessenberg and V(:, 1) = Q(:, 1) then $V(:, i) = \pm Q(:, i)$ for i = 2 : n.

Implication: To compute $A_{i+1} = Q_i^T A Q_i$ we can:

- > Compute 1st column of Q_i [== scalar $\times A(:, 1)$]
- > Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

N/III do thio with Civopo rotational		(*	*	*	*	*
Will do this with Givens rotations:		*	*	*	*	*
	A =	0	*	*	*	*
Example: With $n = 5$:		0	0	*	*	*
		0	0	0	*	*

1. Choose $G_1 = G(1, 2, \theta_1)$ so that $(G_1^T A_0)_{21} = 0$

$$\blacktriangleright A_1 = G_1^T A G_1 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ + & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

2. Choose $G_2 = G(2, 3, \theta_2)$ so that $(G_2^T A_1)_{31} = 0$

$$\blacktriangleright A_2 = G_2^T A_1 G_2 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & + & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

3. Choose $G_3 = G(3, 4, \theta_3)$ so that $(G_3^T A_2)_{42} = 0$

$$\blacktriangleright A_3 = G_3^T A_2 G_3 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & + & * & * \end{pmatrix}$$

4. Choose $G_4 = G(4, 5, \theta_4)$ so that $(G_4^T A_3)_{53} = 0$

$$\blacktriangleright A_4 = G_4^T A_3 G_4 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

- Process known as "Bulge chasing"
- Similar idea for the symmetric (tridiagonal) case