The QR algorithm

$>$ The most common method for solving small (dense) eigenvalue problems. The basic algorithm:

QR without shifts

1. Until Convergence Do:
2. Compute the QR factorization $\boldsymbol{A}=\boldsymbol{Q R}$
3. Set $\boldsymbol{A}:=\boldsymbol{R Q}$
4. EndDo
$>$ "Until Convergence" means "Until \boldsymbol{A} becomes close enough to an upper triangular matrix"
$>$ Note: $A_{\text {new }}=R Q=Q^{H}(Q R) Q=Q^{H} A Q$
$>A_{\text {new }}$ is Unitarily similar to $A \rightarrow$ Spectrum does not change
> Convergence analysis complicated - but insight: we are implicitly doing a QR factorization of A^{k} :

QR-Factorize: Multiply backward:
Step 1

$$
A_{0}=Q_{0} R_{0} \quad A_{1}=R_{0} Q_{0}
$$

Step 2
Step 3:

$$
A_{1}=Q_{1} R_{1} \quad A_{2}=R_{1} Q_{1}
$$

$$
A_{2}=Q_{2} R_{2} \quad A_{3}=R_{2} Q_{2} \quad \text { Then: }
$$

$$
\begin{aligned}
{\left[Q_{0} Q_{1} Q_{2}\right]\left[R_{2} R_{1} R_{0}\right] } & =Q_{0} Q_{1} A_{2} \boldsymbol{R}_{1} \boldsymbol{R}_{0} \\
& =Q_{0}\left(Q_{1} R_{1}\right)\left(Q_{1} R_{1}\right) R_{0} \\
& =Q_{0} A_{1} A_{1} R_{0}, \quad A_{1}=R_{0} Q_{0} \rightarrow \\
& =\underbrace{\left(Q_{0} \boldsymbol{R}_{0}\right)}_{A} \underbrace{\left(Q_{0} R_{0}\right)}_{A} \underbrace{\left(Q_{0} R_{0}\right)}_{A}=A^{3}
\end{aligned}
$$

$>\left[Q_{0} Q_{1} Q_{2}\right]\left[R_{2} R_{1} R_{0}\right]==$ QR factorization of A^{3}
> This helps analyze the algorithm (details skipped)
$>$ Above basic algorithm is never used as is in practice. Two variations:
(1) Use shift of origin and
(2) Start by transforming \boldsymbol{A} into an Hessenberg matrix

Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by $\frac{\left|\lambda_{n}\right|}{\left|\lambda_{n-1}\right|}$
$>$ We will now consider only the real symmetric case.
> Eigenvalues are real.
$>\boldsymbol{A}^{(k)}$ remains symmetric throughout process.
> As k goes to infinity the last column and row (except $a_{n n}^{(k)}$) converge to zero quickly.,,
$>$ and $a_{n n}^{(k)}$ converges to lowest eigenvalue.

$$
A^{(k)}=\left(\begin{array}{cccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\cdot & \cdot & \cdot & \cdot & \cdot & a \\
\hline a & a & a & a & a & a
\end{array}\right)
$$

> Idea: Apply QR algorithm to $A^{(k)}-\mu I$ with $\mu=a_{n n}^{(k)}$. Note: eigenvalues of $A^{(k)}-\mu I$ are shifted by μ (eigenvectors unchanged). \rightarrow Shift matrix by $+\mu I$ after iteration.

QR with shifts

1. Until row $a_{i n}, 1 \leq i<n$ converges to zero DO:
2. Obtain next shift (e.g. $\mu=a_{n n}$)
3. $\quad A-\mu I=Q R$
4. Set $A:=R Q+\mu I$
5. EndDo
> Convergence (of last row) is cubic at the limit! [for symmetric case]
$>$ Result of algorithm:

$$
A^{(k)}=\left(\begin{array}{ccccc|c}
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
\hline 0 & 0 & 0 & 0 & 0 & \lambda_{n}
\end{array}\right)
$$

$>$ Next step: deflate, i.e., apply above algorithm to $(n-1) \times(n-1)$ upper block.

Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

$$
a_{i j}=0 \text { for } i>j+1
$$

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.

Transformation to Hessenberg form
$>$ Want $\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}^{T}=\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}$ to have the form shown on the right
$>$ Consider the first step only on a 6×6 matrix

$$
\left(\begin{array}{llllll}
\star & \star & \star & \star & \star & \star \\
\star & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star \\
0 & \star & \star & \star & \star & \star
\end{array}\right)
$$

$>$ Choose a \boldsymbol{w} in $\boldsymbol{H}_{1}=\boldsymbol{I}-2 \boldsymbol{w} \boldsymbol{w}^{T}$ to make the first column have zeros from position 3 to n. So $w_{1}=0$.
$>$ Apply to left: $\boldsymbol{B}=\boldsymbol{H}_{1} \boldsymbol{A}$
$>$ Apply to right: $\boldsymbol{A}_{1}=B \boldsymbol{H}_{1}$.

Main observation: the Householder matrix \boldsymbol{H}_{1} which transforms the column $\boldsymbol{A}(2$: $n, 1)$ into e_{1} works only on rows 2 to n. When applying the transpose H_{1} to the right of $B=H_{1} A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).
$>$ Algorithm continues the same way for columns $2, \ldots, n-2$.

QR for Hessenberg matrices

$>$ Need the "Implicit Q theorem"
Suppose that $Q^{T} A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.
> In other words if $\boldsymbol{V}^{T} \boldsymbol{A V}=G$ and $Q^{T} A Q=\boldsymbol{H}$ are both Hessenberg and $V(:, 1)=Q(:, 1)$ then $V(:, i)= \pm Q(:, i)$ for $i=2: n$.

Implication: To compute $A_{i+1}=Q_{i}^{T} A Q_{i}$ we can:
$>$ Compute 1 st column of Q_{i} [== scalar $\times \boldsymbol{A}(:, 1)$]
$>$ Choose other columns so $Q_{i}=$ unitary, and $A_{i+1}=$ Hessenberg.
> W'll do this with Givens rotations:
Example: With $n=5$:

$$
\boldsymbol{A}=\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

1. Choose $G_{1}=G\left(1,2, \theta_{1}\right)$ so that $\left(G_{1}^{T} A_{0}\right)_{21}=0$

$$
>A_{1}=G_{1}^{T} A G_{1}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
+ & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

2. Choose $G_{2}=G\left(2,3, \theta_{2}\right)$ so that $\left(G_{2}^{T} A_{1}\right)_{31}=0$

$$
>A_{2}=G_{2}^{T} A_{1} G_{2}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & + & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

3. Choose $G_{3}=G\left(3,4, \theta_{3}\right)$ so that $\left(G_{3}^{T} A_{2}\right)_{42}=0$

$$
>A_{3}=G_{3}^{T} A_{2} G_{3}=\left(\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & + & * & *
\end{array}\right)
$$

4. Choose $G_{4}=G\left(4,5, \theta_{4}\right)$ so that $\left(G_{4}^{T} A_{3}\right)_{53}=0$

$$
>A_{4}=G_{4}^{T} A_{3} G_{4}=\left(\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & *
\end{array}\right)
$$

> Process known as "Bulge chasing"
$>$ Similar idea for the symmetric (tridiagonal) case

