The OR algorithm

» The most common method for solving small (dense) eigenvalue problems. The
basic algorithm:

QR without shifts

Until Convergence Do:
Compute the QR factorization A = QR

1.
2.
3. Set A := RQ
4. EndDo

» “Until Convergence” means “Until A becomes close enough to an upper triangular
matrix”

> Note: Apew = RQ = QH(QR)Q = QHAQ

» A, IS Unitarily similar to A — Spectrum does not change
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» Convergence analysis complicated — but insight: we are implicitly doing a QR
factorization of A*:

QR-Factorize: Multiply backward:
Step 1 Ap = QoRy A1 = RyQo
Step 2 A= QR Ay = R1Qq
Step 3: A2 = QQRQ A3 = R2Q2 Then:
(QoQ1Q:][R2 R Ry] = QoQ1A>R Ry
= Qu(Q1R1)(Q1R1)Ry

= QoA1A 1Ry, Ay = RyQo —

— \(QORO)J \(QORO)J \(QORU), — A3
A A A

> [QoQ1Q:][R2R1Ry] == QR factorization of A®

» This helps analyze the algorithm (details skipped)




» Above basic algorithm is never used as is in practice. Two variations:
(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix




Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by
| An|

|>‘n—1|

» We will now consider only the real symmetric case.

» Eigenvalues are real.
» A®) remains symmetric throughout process.

» As k goes to infinity the last column and row (except a{*)) converge to zero
quickly.,,

» and a*) converges to lowest eigenvalue.




a
\ a a a a a CL)
» ldea: Apply QR algorithm to A®) — uT with 4 = a*). Note: eigenvalues of

A®) — T are shifted by i (eigenvectors unchanged). — Shift matrix by + I after
iteration.




QR with shifts

1. Until row a;,, 1 < 2 < m converges to zero DO:
2. Obtain next shift (e.g. i = a,»)

3. A—ul = QR

5 Set A := RQ + pl

6. EndDo

» Convergence (of last row) is cubic at the limit! [for symmetric case]
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» Result of algorithm:

EREEE

vy

» Next step: deflate, i.e., apply above algorithm to (n — 1) X (n — 1) upper block.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aijZOfOF’i>j—|—1

Observation: The QR algorithm preserves Hessenberg form (tridiagonal form in
symmetric case). Results in substantial savings.

Transformation to Hessenberg form ( * ok ok k% *\
*x ok k  kx X %
» Want H1AH] = H;AH, to have the 0 * * * * %
form shown on the right 0 * * * *x %
0O * * *x *x %
» (Consider the first step only on a 6 X 6 matrix \O *x  x k% *)




» Choose a w in H; = I — 2ww?T to make the first column have zeros from
position 3 to n. So w; = 0.

» Applytoleft: B = H,A

» Apply to right: A, = BH;.

Main observation: the Householder matrix H; which transforms the column A(2 :
n, 1) into e; works only on rows 2 to n. When applying the transpose H; to the

right of B = H; A, we observe that only columns 2 to nn will be altered. So the
first column will retain the desired pattern (zeros below row 2).

» Algorithm continues the same way for columns 2, ....n — 2.




OR for Hessenberg matrices

» Need the “Implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix. Then columns 2
to n of @ are determined uniquely (up to signs) by the first column of Q.

» In other words if VAV = G and QTAQ = H are both Hessenberg and
V(1) =Q((:,1)then V(:,4) = £Q(:,2) fort = 2 : n.

Implication: |To compute A;,1 = Q7 AQ; we can:

» Compute 1st column of Q; [== scalar x A(:,1)]

» Choose other columns so Q); = unitary, and A;,; = Hessenberg.




» W’Il do this with Givens rotations:
* x * b S *
5 ] _ _ A=|[0 =* x x
xample: |(Withn =5: 0 0 x % =
\0 0 0 * %

1. Choose G1 = G(1,2,6,) so that (G Ag)21 = 0

> Al — GfAGl — —|—

O
O O ¥ * X
O ¥ ¥ *x ¥
* X X * X




2. Choose G5 =

3. Choose G5 =

G(2 3, 02) so that (G A1)31 =0

» Ay =

G A1Gy =

.

0
0

\0

*
*
*
_I_
0

O ¥ X X% *

G(3 4 03) so that (G A2)42 =0

» Az =

G ArG3 =

.

0
0

\0

O O ¥ % X

R

* % X X *

* % X X% ¥




4. Choose G4 = G(4,5,0,) so that (G} A3)s3 = 0

> Ay = GrA3Gy =

» Process known as “Bulge chasing”

»  Similar idea for the symmetric (tridiagonal) case
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