The QR alg	gorithm
------------	---------

> The most common method for solving small (dense) eigenvalue problems. The QR-Factorize: Multiply backward: basic algorithm: Step 1 QR without shifts Step 2 $A_2 = Q_2 R_2 \qquad \qquad A_3 = R_2 Q_2$ Then: Step 3: 1. Until Convergence Do: Compute the QR factorization A = QR $[Q_0Q_1Q_2][R_2R_1R_0] = Q_0Q_1A_2R_1R_0$ 2. 3. Set A := RQ $= Q_0(Q_1R_1)(Q_1R_1)R_0$ 4. EndDo $= Q_0 A_1 A_1 R_0, \qquad A_1 = R_0 Q_0 \rightarrow$ $=\underbrace{(Q_0R_0)}_{A}\underbrace{(Q_0R_0)}_{A}\underbrace{(Q_0R_0)}_{A}=A^3$ > "Until Convergence" means "Until A becomes close enough to an upper triangular matrix" \triangleright $[Q_0Q_1Q_2][R_2R_1R_0] == QR$ factorization of A^3 > Note: $A_{new} = RQ = Q^H(QR)Q = Q^HAQ$ This helps analyze the algorithm (details skipped) > \blacktriangleright A_{new} is Unitarily similar to $A \rightarrow$ Spectrum does not change GvL 8.1-8.2.3 – Eigen2 13-1 GvL 8.1-8.2.3 - Eigen2 13-2 > Above basic algorithm is never used as is in practice. Two variations: Practical QR algorithms: Shifts of origin (1) Use shift of origin and Observation: (from theory): Last row converges fastest. Convergence is dictated by (2) Start by transforming A into an Hessenberg matrix $|\lambda_n|$ $\overline{|\lambda_{n-1}|}$ We will now consider only the real symmetric case. > Eigenvalues are real. $A^{(k)}$ remains symmetric throughout process. > As k goes to infinity the last column and row (except $a_{nn}^{(k)}$) converge to zero ≻ quickly... > and $a_{nn}^{(k)}$ converges to lowest eigenvalue. GvL 8.1-8.2.3 - Eigen2 GvL 8.1-8.2.3 – Eigen2 13-3 13-4

factorization of A^k :

Convergence analysis complicated – but insight: we are implicitly doing a QR

$A^{(k)} = \begin{pmatrix} \ddots & \ddots & \ddots & a \\ \ddots & \ddots & \ddots & a \\ \vdots & \ddots & \ddots & \ddots & a \\ \vdots & \ddots & \ddots & \ddots & a \\ a & a & a & a & a & a \\ \end{pmatrix}$ $ Idea: Apply QR algorithm to A^{(k)} - \mu I with \mu = a_{nn}^{(k)}. Note: eigenvalues of A^{(k)} - \mu I are shifted by \mu (eigenvectors unchanged). \rightarrow Shift matrix by +\mu I after iteration.$	QR with shifts1. Until row $a_{in}, 1 \le i < n$ converges to zero DO:2. Obtain next shift (e.g. $\mu = a_{nn}$)3. $A - \mu I = QR$ 5. Set $A := RQ + \mu I$ 6. EndDo> Convergence (of last row) is cubic at the limit! [for symmetric case]
13-5 GvL 8.1-8.2.3 – Eigen2	13-6 GvL 8.1-8.2.3 – Eigen2
$\mathbf{A}^{(k)} = \begin{pmatrix} & & & & & & & & & & & \\ & & & & & & &$	Practical algorithm: Use the Hessenberg Form Recall: Upper Hessenberg matrix is such that $a_{ij} = 0$ for $i > j + 1$
$\left(egin{array}{cccccccccccccccccccccccccccccccccccc$	<u>Observation:</u> The QR algorithm preserves Hessenberg form (tridiagonal form in symmetric case). Results in substantial savings.
Next step: deflate, i.e., apply above algorithm to $(n-1) \times (n-1)$ upper block.	Transformation to Hessenberg form $(*$ $*$
	> Consider the first step only on a 6×6 matrix $\begin{pmatrix} 0 & \star & \star & \star & \star \end{pmatrix}$
13-7 GvL 8.1-8.2.3 – Eigen2	13-8 GvL 8.1-8.2.3 – Eigen2

- ► Choose a w in $H_1 = I 2ww^T$ to make the first column have zeros from position 3 to n. So $w_1 = 0$.
- > Apply to left: $B = H_1 A$
- > Apply to right: $A_1 = BH_1$.

Main observation: the Householder matrix H_1 which transforms the column A(2: n, 1) into e_1 works only on rows 2 to n. When applying the transpose H_1 to the right of $B = H_1A$, we observe that only columns 2 to n will be altered. So the first column will retain the desired pattern (zeros below row 2).

> Algorithm continues the same way for columns 2, ..., n - 2.

QR for Hessenberg matrices

► Need the "Implicit Q theorem"

Suppose that $Q^T A Q$ is an unreduced upper Hessenberg matrix. Then columns 2 to n of Q are determined uniquely (up to signs) by the first column of Q.

▶ In other words if $V^T A V = G$ and $Q^T A Q = H$ are both Hessenberg and V(:, 1) = Q(:, 1) then $V(:, i) = \pm Q(:, i)$ for i = 2 : n.

Implication: To compute $A_{i+1} = Q_i^T A Q_i$ we can:

- > Compute 1st column of Q_i [== scalar $\times A(:, 1)$]
- > Choose other columns so Q_i = unitary, and A_{i+1} = Hessenberg.

13-9	GvL 8.1-8.2.3 – Eigen213-10	GvL 8.1-8.2.3 – Eigen2
> W'll do this with Givens rotations: Example: With $n = 5$: 1. Choose $G_1 = G(1, 2, \theta_1)$ so that $(G_1^T A_0)_{21} = 0$	$ \begin{array}{c} * & * & * \\ * & * & * \\ * & * & * \\ * & * &$	
$\blacktriangleright A_{1} = G_{1}^{T}AG_{1} = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ + & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$	$ \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & + \end{pmatrix} $	* * * * * * * * * *
13-11	GvL 8.1-8.2.3 – Eigen2	

4. Choose $G_4=G(4,5, heta_4)$ so that $(G_4^TA_3)_{53}=0$

$$\blacktriangleright \ A_4 = G_4^T A_3 G_4 = \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \end{pmatrix}$$

> Process known as "Bulge chasing"

13-13

> Similar idea for the symmetric (tridiagonal) case

GvL 8.1-8.2.3 – Eigen2