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The symmetric eigenvalue problem: Basic facts

ä Consider the Schur form of a real symmetric matrix A:

A = QRQH

Since AH = A then R = RH ä

Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, Q can be taken to be real when A is real.

(A− λI)(u+ iv) = 0→ (A− λI)u = 0 & (A− λI)v = 0

ä Can select eigenvector to be either u or v
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: λ1 ≥ λ2 ≥ · · · ≥ λn

The eigenvalues of a Hermitian matrix A are characterized by the relation

λk = max
S, dim(S)=k

min
x∈S,x 6=0

(Ax, x)

(x, x)

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is
an orthonormal basis of eigenvectors u1, u2, · · · , un. Express any vector x in this
basis as x =

∑n
i=1αiui. Then : (Ax, x)/(x, x) = [

∑
λi|αi|2]/[

∑
|αi|2].

(a) Let S be any subspace of dimension k and letW = span{uk, uk+1, · · · , un}. A
dimension argument (used before) shows that S∩W 6= {0}. So there is a non-zero
xw in S ∩W .
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ä Express this xw in the eigenbasis as xw =
∑n
i=k αiui. Then since λi ≤ λk for

i ≥ k we have:
(Axw, xw)

(xw, xw)
=

∑n
i=k λi|αi|2∑n
i=k |αi|2

≤ λk

Thus, for any subspace S of dim. k we have minx∈S,x6=0(Ax, x)/(x, x) ≤ λk.

(b) We now take S∗ = span{u1, u2, · · · , uk}. Since λi ≥ λk for i ≤ k, for this
particular subspace we have:

min
x ∈ S∗, x 6=0

(Ax, x)

(x, x)
= min

x ∈ S∗, x 6=0

∑k
i=1 λi|αi|2∑n
i=k |αi|2

= λk.

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of
minx∈S,x6=0(Ax, x)/(x, x) is equal to λk
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ä Consequences:

λ1 = max
x 6=0

(Ax, x)

(x, x)
λn = min

x6=0

(Ax, x)

(x, x)

ä Actually 4 versions of the same theorem. 2nd version:

λk = min
S, dim(S)=n−k+1

max
x∈S,x 6=0

(Ax, x)

(x, x)

ä Other 2 versions come from ordering eigenvalues increasingly instead of de-
creasingly.

-1 Write down all 4 versions of the theorem

-2 Use the min-max theorem to show that ‖A‖2 = σ1(A) - the largest singular
value of A.
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ä Interlacing Theorem: Denote the k × k principal submatrix of A as Ak, with
eigenvalues {λ[k]

i }ki=1. Then

λ
[k]
1 ≥ λ

[k−1]
1 ≥ λ[k]

2 ≥ λ
[k−1]
2 ≥ · · ·λ[k−1]

k−1 ≥ λ
[k]
k

Example: λi’s = eigenvalues of A, µi’s = eigenvalues of An−1:

• • •? ? ?
λn
•

λn−1
•

µn−1
?

µn−2
?

λ3

•
λ2

•
λ1

•
µ2

?
µ1

?

ä Many uses.

ä For example: interlacing theorem for roots of orthogonal polynomials
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The Law of inertia (real symmetric matrices)

ä Inertia of a matrix = [m, z, p] with m = number of < 0 eigenvalues, z = number
of zero eigenvalues, and p = number of > 0 eigenvalues.

Sylvester’s Law
of inertia:

If X ∈ Rn×n is nonsingular, then A and
XTAX have the same inertia.

ä Terminology: XTAX is congruent to A

-3 Suppose that A = LDLT where L is unit lower triangular, and D diagonal.
How many negative eigenvalues does A have?

-4 Assume that A is tridiagonal. How many operations are required to determine
the number of negative eigenvalues of A?
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-5 Devise an algorithm based on the inertia theorem to compute the i-th eigen-
value of a tridiagonal matrix.

-6 Let F ∈ Rm×n, with n < m, and F of rank n.

What is the inertia of the matrix on the right:
[Hint: use a block LU factorization]

(
I F

F T 0

)

ä Note 1: Converse result also true: If A and B have same inertia they are
congruent. [This part is easy to show]

ä Note 2: result also true for (complex) Hermitian matrices (XHAX has same
inertia as A).
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Bisection algorithm for tridiagonal matrices:

ä Goal: to compute i-th eigenvalue of A (tridiagonal)

ä Get interval [a, b] containing spectrum [Gerschgorin]: a ≤ λn ≤ · · · ≤ λ1 ≤ b

ä Let σ = (a+ b)/2 = middle of interval

ä Calculate p = number of positive eigenvalues of A− σI

• If p ≥ i then λi ∈ (σ, b]→ set a := σ

a bσλ λ λ λ
1in−1n

• Else then λi ∈ [a, σ]→ set b := σ

ä Repeat until b− a is small enough.
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The QR algorithm for symmetric matrices

ä Most important method used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

ä Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause

HAHT = A1

is symmetric and also of Hessenberg form ä it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation
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Practical method

ä How to implement the QR algorithm with shifts?

ä It is best to use Givens rotations – can do a shifted QR step without explicitly
shifting the matrix..

ä Two most popular shifts:

s = ann and s = smallest e.v. of A(n− 1 : n, n− 1 : n)
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Jacobi iteration - Symmetric matrices

ä Main idea: Rotation matrices of the form

J(p, q, θ) =



1 . . . 0 . . . 0 0
... . . . ... ... ... ... ...
0 · · · c · · · s · · · 0
... · · · ... . . . ... ... ...
0 · · · −s · · · c · · · 0
... · · · ... · · · ... · · · ...
0 . . . 0 . . . 1


p

q

c = cos θ and s = sin θ are so that J(p, q, θ)TAJ(p, q, θ) has a zero in position
(p, q) (and also (q, p))

ä Frobenius norm of matrix is preserved – but diagonal elements become larger ä

convergence to a diagonal.
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ä Let B = JTAJ (where J ≡ Jp,q,θ).

ä Look at 2× 2 matrix B([p, q], [p, q]) (matlab notation)

ä Keep in mind that apq = aqp and bpq = bqp

(
bpp bpq
bqp bqq

)
=

(
c −s
s c

)(
app apq
aqp aqq

)(
c s

−s c

)
= ...

=

[
c2app + s2aqq − 2sc apq (c2 − s2)apq − sc(aqq − app)

∗ c2aqq + s2app + 2sc apq

]

ä Want: (c2 − s2)apq − sc(aqq − app) = 0
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c2 − s2

2sc
=
aqq − app

2apq
≡ τ

ä Letting t = s/c (= tan θ) → quad. equation

t2 + 2τt− 1 = 0

ä t = −τ ±
√
1 + τ 2 = 1

τ±
√
1+τ 2

ä Select sign to get a smaller t so θ ≤ π/4.

ä Then : c =
1

√
1 + t2

; s = c ∗ t

ä Implemented in matlab script jacrot(A,p,q) –
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ä Define: AO = A− Diag(A)
≡ A ‘with its diagonal entries
replaced by zeros’

ä Observations: (1) Unitary transformations preserve ‖.‖F . (2) Only changes are
in rows and columns p and q.

ä Let B = JTAJ

(where J ≡ Jp,q,θ). Then:
a2
pp + a2

qq + 2a2
pq = b2pp + b2qq + 2b2pq = b2pp + b2qq

because bpq = 0. Then, a little calculation leads to:

‖BO‖2F = ‖B‖2F −
∑

b2ii = ‖A‖
2
F −

∑
b2ii

= ‖A‖2F −
∑

a2
ii +

∑
a2
ii −

∑
b2ii

= ‖AO‖2F + (a2
pp + a2

qq − b
2
pp − b

2
qq)

= ‖AO‖2F − 2a2
pq
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ä ‖AO‖F will decrease from one step to the next.

-7 Let ‖AO‖I = maxi 6=j |aij|. Show that

‖AO‖F ≤
√
n(n− 1)‖AO‖I

-8 Use this to show convergence in the case when largest entry is zeroed at each
step.
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