Symmetric Eigenvalue Problems

- The symmetric eigenvalue problem: basic facts
- Min-Max theorem -
- Inertia of matrices
- Bisection algorithm
- QR algorithm for symmetric matrices
- The Jacobi method

The symmetric eigenvalue problem: Basic facts

$>$ Consider the Schur form of a real symmetric matrix A :

$$
A=Q R Q^{H}
$$

Since $\boldsymbol{A}^{H}=\boldsymbol{A}$ then $\boldsymbol{R}=\boldsymbol{R}^{\boldsymbol{H}}$ >
Eigenvalues of \boldsymbol{A} are real and

There is an orthonormal basis of eigenvectors of \boldsymbol{A}

In addition, Q can be taken to be real when \boldsymbol{A} is real.

$$
(A-\lambda I)(u+i v)=0 \rightarrow(A-\lambda I) u=0 \&(A-\lambda I) v=0
$$

$>$ Can select eigenvector to be either u or v

The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: $\quad \lambda_{1} \geq \boldsymbol{\lambda}_{2} \geq \cdots \geq \boldsymbol{\lambda}_{n}$

The eigenvalues of a Hermitian matrix \boldsymbol{A} are characterized by the relation

$$
\lambda_{k}=\max _{S, \operatorname{dim}(S)=k} \min _{x \in S, x \neq 0} \frac{(A x, x)}{(x, x)}
$$

Proof: Preparation: Since \boldsymbol{A} is symmetric real (or Hermitian complex) there is an orthonormal basis of eigenvectors $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{n}$. Express any vector \boldsymbol{x} in this basis as $x=\sum_{i=1}^{n} \alpha_{i} u_{i}$. Then : $(A x, x) /(x, x)=\left[\sum \lambda_{i}\left|\alpha_{i}\right|^{2}\right] /\left[\sum\left|\alpha_{i}\right|^{2}\right]$.
(a) Let S be any subspace of dimension k and let $\mathcal{W}=\operatorname{span}\left\{u_{k}, u_{k+1}, \cdots, u_{n}\right\}$. A dimension argument (used before) shows that $S \cap \mathcal{W} \neq\{0\}$. So there is a non-zero x_{w} in $S \cap \mathcal{W}$.
$>$ Express this $\boldsymbol{x}_{\boldsymbol{w}}$ in the eigenbasis as $\boldsymbol{x}_{\boldsymbol{w}}=\sum_{i=k}^{n} \boldsymbol{\alpha}_{i} \boldsymbol{u}_{i}$. Then since $\boldsymbol{\lambda}_{i} \leq \boldsymbol{\lambda}_{\boldsymbol{k}}$ for $i \geq k$ we have:

$$
\frac{\left(A x_{w}, x_{w}\right)}{\left(x_{w}, x_{w}\right)}=\frac{\sum_{i=k}^{n} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=k}^{n}\left|\alpha_{i}\right|^{2}} \leq \lambda_{k}
$$

Thus, for any subspace S of dim. k we have $\min _{x \in S, x \neq 0}(A x, x) /(x, x) \leq \lambda_{k}$.
(b) We now take $S_{*}=\operatorname{span}\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$. Since $\lambda_{i} \geq \lambda_{k}$ for $i \leq k$, for this particular subspace we have:

$$
\min _{x \in S_{*}, x \neq 0} \frac{(A x, x)}{(x, x)}=\min _{x \in S_{*}, x \neq 0} \frac{\sum_{i=1}^{k} \lambda_{i}\left|\alpha_{i}\right|^{2}}{\sum_{i=k}^{n}\left|\alpha_{i}\right|^{2}}=\lambda_{k}
$$

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. \boldsymbol{k} of $\min _{x \in S, x \neq 0}(A x, x) /(x, x)$ is equal to λ_{k}
$>$ Consequences:

$$
\lambda_{1}=\max _{x \neq 0} \frac{(A x, x)}{(x, x)} \quad \lambda_{n}=\min _{x \neq 0} \frac{(A x, x)}{(x, x)}
$$

$>$ Actually 4 versions of the same theorem. 2nd version:

$$
\lambda_{k}=\min _{S, \operatorname{dim}(S)=n-k+1} \max _{x \in S, x \neq 0} \frac{(A x, x)}{(x, x)}
$$

$>$ Other 2 versions come from ordering eigenvalues increasingly instead of decreasingly.

Q1 Write down all 4 versions of the theorem
$\leftrightarrow 2$ Use the min-max theorem to show that $\|A\|_{2}=\sigma_{1}(A)$ - the largest singular value of \boldsymbol{A}.
$>$ Interlacing Theorem: Denote the $k \times k$ principal submatrix of A as A_{k}, with eigenvalues $\left\{\lambda_{i}^{[k]}\right\}_{i=1}^{k}$. Then

$$
\lambda_{1}^{[k]} \geq \lambda_{1}^{[k-1]} \geq \lambda_{2}^{[k]} \geq \lambda_{2}^{[k-1]} \geq \cdots \lambda_{k-1}^{[k-1]} \geq \lambda_{k}^{[k]}
$$

Example: λ_{i} 's = eigenvalues of A, μ_{i} 's = eigenvalues of A_{n-1} :

> Many uses.
> For example: interlacing theorem for roots of orthogonal polynomials

The Law of inertia (real symmetric matrices)

$>$ Inertia of a matrix $=[\mathrm{m}, \mathrm{z}, \mathrm{p}]$ with $m=$ number of <0 eigenvalues, $z=$ number of zero eigenvalues, and $p=$ number of >0 eigenvalues.

| Sylvester's Law |
| :--- | :--- |
| of inertia: |\quad| If $X \in \mathbb{R}^{n \times n}$ is nonsingular, then \boldsymbol{A} and |
| :--- | :--- |
| $X^{T} A X$ have the same inertia. |

$>$ Terminology: $\boldsymbol{X}^{\boldsymbol{T}} \boldsymbol{A} \boldsymbol{X}$ is congruent to \boldsymbol{A}
x_{0} Suppose that $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$ where L is unit lower triangular, and \boldsymbol{D} diagonal. How many negative eigenvalues does \boldsymbol{A} have?
$\$_{4}$ Assume that \boldsymbol{A} is tridiagonal. How many operations are required to determine the number of negative eigenvalues of \boldsymbol{A} ?
ω_{0} Devise an algorithm based on the inertia theorem to compute the i-th eigenvalue of a tridiagonal matrix.

Let $\boldsymbol{F} \in \mathbb{R}^{\boldsymbol{m} \times n}$, with $\boldsymbol{n}<\boldsymbol{m}$, and \boldsymbol{F} of rank \boldsymbol{n}.
What is the inertia of the matrix on the right: [Hint: use a block LU factorization]

$$
\left(\begin{array}{cc}
\boldsymbol{I} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & 0
\end{array}\right)
$$

$>$ Note 1: Converse result also true: If \boldsymbol{A} and \boldsymbol{B} have same inertia they are congruent. [This part is easy to show]
$>$ Note 2: result also true for (complex) Hermitian matrices $\left(\boldsymbol{X}^{H} \boldsymbol{A} \boldsymbol{X}\right.$ has same inertia as \boldsymbol{A}).

Bisection algorithm for tridiagonal matrices:

$>$ Goal: to compute i-th eigenvalue of \boldsymbol{A} (tridiagonal)
$>$ Get interval $[a, b]$ containing spectrum [Gerschgorin]: $a \leq \lambda_{n} \leq \cdots \leq \lambda_{1} \leq b$
$>$ Let $\sigma=(a+b) / 2=$ middle of interval
$>$ Calculate $p=$ number of positive eigenvalues of $A-\sigma I$

- If $p \geq i$ then $\lambda_{i} \in(\sigma, b] \rightarrow \quad$ set $a:=\sigma$

- Else then $\lambda_{i} \in[a, \sigma] \rightarrow$ set $b:=\sigma$
$>$ Repeat until $\boldsymbol{b}-\boldsymbol{a}$ is small enough.

The QR algorithm for symmetric matrices

> Most important method used : reduce to tridiagonal form and apply the QR algorithm with shifts.
> Householder transformation to Hessenberg form yields a tridiagonal matrix because

$$
\boldsymbol{H A H} \boldsymbol{H}^{T}=\boldsymbol{A}_{1}
$$

is symmetric and also of Hessenberg form > it is tridiagonal symmetric.
Tridiagonal form preserved by QR similarity transformation

Practical method

> How to implement the QR algorithm with shifts?
> It is best to use Givens rotations - can do a shifted QR step without explicitly shifting the matrix..
> Two most popular shifts:

$$
s=a_{n n} \text { and } s=\text { smallest e.v. of } A(n-1: n, n-1: n)
$$

Jacobi iteration - Symmetric matrices

> Main idea: Rotation matrices of the form

$$
J(p, q, \theta)=\left(\begin{array}{ccccccc}
1 & \cdots & 0 & & \cdots & 0 & 0 \\
\vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & c & \cdots & s & \cdots & 0 \\
\vdots & \cdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & -s & \cdots & c & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & & \cdots & & 1
\end{array}\right) \quad q
$$

$c=\cos \theta$ and $s=\sin \theta$ are so that $J(p, q, \theta)^{T} A J(p, q, \theta)$ has a zero in position (p, q) (and also $(q, p))$
$>$ Frobenius norm of matrix is preserved - but diagonal elements become larger convergence to a diagonal.
$>$ Let $\boldsymbol{B}=\boldsymbol{J}^{T} \boldsymbol{A} \boldsymbol{J}$ (where $\boldsymbol{J} \equiv J_{p, q, \theta}$).
$>$ Look at 2×2 matrix $B([p, q],[p, q])$ (matlab notation)
$>$ Keep in mind that $a_{p q}=a_{q p}$ and $b_{p q}=b_{q p}$

$$
\begin{aligned}
\left(\begin{array}{cc}
b_{p p} & b_{p q} \\
b_{q p} & b_{q q}
\end{array}\right) & =\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{cc}
a_{p p} & a_{p q} \\
a_{q p} & a_{q q}
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)=\ldots \\
& =\left[\begin{array}{c|c}
c^{2} a_{p p}+s^{2} a_{q q}-2 s c a_{p q} \mid\left(c^{2}-s^{2}\right) a_{p q}-s c\left(a_{q q}-a_{p p}\right) \\
\hline * & c^{2} a_{q q}+s^{2} a_{p p}+2 s c a_{p q}
\end{array}\right]
\end{aligned}
$$

> Want:

$$
\left(c^{2}-s^{2}\right) a_{p q}-s c\left(a_{q q}-a_{p p}\right)=0
$$

$$
\frac{c^{2}-s^{2}}{2 s c}=\frac{a_{q q}-a_{p p}}{2 a_{p q}} \equiv \tau
$$

$>$ Letting $t=s / c(=\tan \theta) \quad \rightarrow$ quad. equation

$$
t^{2}+2 \tau t-1=0
$$

$>t=-\tau \pm \sqrt{1+\tau^{2}}=\frac{1}{\tau \pm \sqrt{1+\tau^{2}}}$
$>$ Select sign to get a smaller t so $\theta \leq \pi / 4$.
> Then:

$$
c=\frac{1}{\sqrt{1+t^{2}}} ; \quad s=c * t
$$

> Implemented in matlab script jacrot (A, p, q) -
$>$ Define: $\quad \boldsymbol{A}_{O}=\boldsymbol{A}-\operatorname{Diag}(\boldsymbol{A})$
$\equiv \boldsymbol{A}$ 'with its diagonal entries replaced by zeros'
> Observations: (1) Unitary transformations preserve $\|\cdot\|_{F}$. (2) Only changes are in rows and columns p and q.
$>$ Let $B=J^{T} A J$ (where $J \equiv J_{p, q, \theta}$). Then:

$$
a_{p p}^{2}+a_{q q}^{2}+2 a_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}+2 b_{p q}^{2}=b_{p p}^{2}+b_{q q}^{2}
$$ because $b_{p q}=0$. Then, a little calculation leads to:

$$
\begin{aligned}
\left\|\boldsymbol{B}_{O}\right\|_{F}^{2} & =\|B\|_{F}^{2}-\sum b_{i i}^{2}=\|\boldsymbol{A}\|_{F}^{2}-\sum b_{i i}^{2} \\
& =\|\boldsymbol{A}\|_{F}^{2}-\sum a_{i i}^{2}+\sum a_{i i}^{2}-\sum b_{i i}^{2} \\
& =\left\|\boldsymbol{A}_{O}\right\|_{F}^{2}+\left(a_{p p}^{2}+a_{q q}^{2}-b_{p p}^{2}-b_{q q}^{2}\right) \\
& =\left\|\boldsymbol{A}_{O}\right\|_{F}^{2}-2 a_{p q}^{2}
\end{aligned}
$$

$\left\|\boldsymbol{A}_{O}\right\|_{F}$ will decrease from one step to the next.
\& Let $\left\|A_{O}\right\|_{I}=\max _{i \neq j}\left|a_{i j}\right|$. Show that

$$
\left\|A_{O}\right\|_{F} \leq \sqrt{n(n-1)}\left\|A_{O}\right\|_{I}
$$

α_{08} Use this to show convergence in the case when largest entry is zeroed at each step.

