Symmetric Eigenvalue Problems

e The symmetric eigenvalue problem: basic facts
e Min-Max theorem -

e Inertia of matrices

e Bisection algorithm

e QR algorithm for symmetric matrices

e The Jacobi method



The symmetric eigenvalue problem: Basic facts

» (Consider the Schur form of a real symmetric matrix A:
A = QRQ"
Since A” = Athen R = RH »
Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, ) can be taken to be real when A is real.
(A—Al)(u+iv) =0—> (A—-—A)u=0& (A—AH)v =20

» (Can select eigenvector to be either u or v
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: Aq > Ay > -« > A,

The eigenvalues of a Hermitian matrix A are characterized by the relation

. (Axz, x)
AL = max min
S, dim(S)=k =z€S,x#£0 (x, )

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is
an orthonormal basis of eigenvectors wq, uo, - - - , u,,. EXpress any vector x in this
basisas z = ) ;" , aju;. Then: (Azx,x)/(z,x) = > Ni|ai|?]/[> |eil?].

(a) Let S be any subspace of dimension k and let W = span{ug, ugi1,°+ s un}. A
dimension argument (used before) shows that SNW # {0}. So there is a non-zero
T, NS N W.
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» Express this x,, in the eigenbasis as x,, = Z?:k o;u;. Then since A\; < A\ for
1 > k we have:

ATy, T vl agl)?
(Tws Tw) Zi:k |
Thus, for any subspace S of dim. k we have mingcg z+0(Ax, x)/(z, ) < Ag.

(b) We now take S, = span{ui,us,--- ,ur}. Since \; > Mg forz < Ek, for this
particular subspace we have:

(Az,z) . SF L il — A

min = min
z € Sy 240 (z, ) z € S, a0 Y oy

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of
minges.+0(Ax, x)/(x, x) is equal to A
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» (Consequences:

(Ax, x) . (Azx, )
A1 = max A, = min
z£0 (x,x) z£0 (x, )

» Actually 4 versions of the same theorem. 2nd version:

_ (Ax, x)
A = min max
S, dim(S)=n—k+1 x€Sz#0 (x,x)

» Other 2 versions come from ordering eigenvalues increasingly instead of de-
creasingly.

#1| Write down all 4 versions of the theorem

#2| Use the min-max theorem to show that || A||s = o1(A) - the largest singular
value of A.
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» Interlacing Theorem: Denote the k X k principal submatrix of A as Ag, with
eigenvalues {A"}*_ . Then

AT > AP > A0 > AT > A > A

Example: | \;'s = eigenvalues of A, u;'s = eigenvalues of A,,_;:

)\n )\n—l )\3 )\2 )\1
@k @ %k @& Sk O >k O Kk O® *x & k% 0
Hn—1 Hrn—2 L2 M1

» Many uses.

» For example: interlacing theorem for roots of orthogonal polynomials
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The Law of inertia (real symmetric matrices)

» |nertia of a matrix = [m, z, p] with m = number of < 0 eigenvalues, z = number
of zero eigenvalues, and p = number of > 0 eigenvalues.

Sylvester’s Law If X € R™*"™ js nonsingular, then A and
of inertia: XT AX have the same inertia.

» Terminology: X1 AX is congruent to A

#3| Suppose that A = LDL? where L is unit lower triangular, and D diagonal.
How many negative eigenvalues does A have?

#4| Assume that A is tridiagonal. How many operations are required to determine
the number of negative eigenvalues of A?
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#5| Devise an algorithm based on the inertia theorem to compute the 2-th eigen-
value of a tridiagonal matrix.

#6| Let ' € R™*™ with n < m, and F of rank n.

What is the inertia of the matrix on the right: I F
[Hint: use a block LU factorization] FT o

» Note 1: Converse result also true: If A and B have same inertia they are
congruent. [This part is easy to show]

» Note 2: result also true for (complex) Hermitian matrices (X* AX has same
inertia as A).
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Bisection algorithm for tridiagonal matrices: |

» (Goal: to compute 2-th eigenvalue of A (tridiagonal)

» Getinterval [a, b] containing spectrum [Gerschgorin]: a < A, < - < A < b
» Let o = (a + b)/2 = middle of interval

» Calculate p = number of positive eigenvalues of A — ol

o lfp>ithen\; € (o, ] > set a: =0

a Ly Ani G 2 A, b
@

I ® ® ® I *—©

e Elsethen \; € [a, 0] & set b:=o

» Repeat until b — a is small enough.
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The OR algorithm for symmetric matrices

» Most important method used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

» Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause

HAHT = A,

is symmetric and also of Hessenberg form » it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation
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Practical method I

» How to implement the QR algorithm with shifts?

» |t is best to use Givens rotations — can do a shifted QR step without explicitly
shifting the matrix..

» Two most popular shifts:

S = ap, and s =smallestev. of A(n —1:n,n—1:n)
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Jacobi iteration - Symmetric matrices

» Main idea: Rotation matrices of the form

J(p, q, 9) —

c = cos 0 and s = sin 0 are so that J(p, q,0)T AJ(p, q, 0) has a zero in position
(p, q) (and also (q, p))

» Frobenius norm of matrix is preserved — but diagonal elements become larger »
convergence to a diagonal.
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» Let B = JTAJ (where J = J,, 4.0).
» Look at 2 x 2 matrix B([p, q], [p, q]) (matlab notation)

» Keep in mind that a,, = a4, and by, = by,

bpp bpg _ [c —s App Qpq c S\ _
by beg) \s c Qgp Aqq) \—8 c| 77

_ [Czapp + 32aqq — 2sc apq (c® — 32)apq — sc(agq — app)

2 2
* C°Qgq + S°apy, + 28C ayg

» Want: (C2 — 32)“1%1 — sc(agqg — app) =0
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2 2

= =T
2sc 20
» Lettingt = s/c (= tanf) — quad. equation
t?+21t—1=0
- 2
» t=—17EtV1+4+T m
» Select sign to get a smallert so 8 < 7 /4.
» Th ! t
en : c = : s =rc=x*
V1F 2

» Implemented in matlab script jacrot (A, p,q) —
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. = A ‘with its diagonal entries
> Define: Ao = A — Diag(A) 0
replaced by zeros

» Observations: (1) Unitary transformations preserve ||.||r. (2) Only changes are
in rows and columns p and gq.

» LetB=J"AJ
(where J = Jp, 4,0). Then:

because b,, = 0. Then, a little calculation leads to:

||BO||%‘ — B”%’ - szzz — ||A||% - szzz
A||%' - Za?i + Za’?i - szzz
AollF + (a’129p + an - b129p - qu)
Aol — 2a,,

2 2 2 __ 1.2 2 2 __ 1.2 2
app_l_aqq_l_zapq - bpp+bqq+2bpq - bpp+bqq
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» || Ao||r will decrease from one step to the next.

#7| Let ||A0||I — MaX;+£; |a,7;j|. Show that

l4ollF < y/n(n — 1)]| Aol

#g| Use this to show convergence in the case when largest entry is zeroed at each
step.
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