Symmetric Eigenvalue Problems

e The symmetric eigenvalue problem: basic facts
¢ Min-Max theorem -

e Inertia of matrices

e Bisection algorithm

¢ QR algorithm for symmetric matrices

e The Jacobi method

The symmetric eigenvalue problem: Basic facts

» Consider the Schur form of a real symmetric matrix A:
A = QRQH
Since A” = Athen R = R »
Eigenvalues of A are real

and

There is an orthonormal basis of eigenvectors of A

In addition, @ can be taken to be real when A is real.
(A-A)(u+iv) =0 > (A—A)u=0& (A—-Al)v =0

» Can select eigenvector to be either u or v
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The min-max theorem (Courant-Fischer)

Label eigenvalues decreasingly: Ay > Ay > -« > A,

The eigenvalues of a Hermitian matrix A are characterized by the relation

(Az, x)
A, = max min ——~
S, dim(S)=k xES,z#0 (;1;, a:)

Proof: Preparation: Since A is symmetric real (or Hermitian complex) there is
an orthonormal basis of eigenvectors uq, us, - - - , u,,. Express any vector x in this
basisas x = Y1, ayu;. Then: (Az, z)/(z, ) = [3 Ailau|?]/[X |l

» Express this x,, in the eigenbasis as x.,, = >_" , a;u;. Then since A; < X, for
1 > k we have:

AZoyy T il ]?
(Arw,2e) _ SipAlol
(wwa xw) Zi:k |az|
Thus, for any subspace S of dim. k we have mingcg .-0(Ax, x)/(xz, ) < Ag.
(b) We now take S, = span{wuj, uz,--- ,ur}. Since \; > A for i < k, for this
particular subspace we have:
(Az,z) Y Aileu*

min = = A\p-
z € 8S,, x40 (m, :z:) x € 8,, x#£0 Z?:k |ai|2 k

(c) The results of (a) and (b) imply that the max over all subspaces S of dim. k of

minges 20 Az, z)/(x, ) is equal to Ay L]
(a) Let S be any subspace of dimension k and let W = span{uy, ugi1,++ ,un}. A
dimension argument (used before) shows that SN W # {0}. So there is a non-zero
T, iNSNW.
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» Consequences:

» Actually 4 versions of the same theorem. 2nd version:

. (Az, x)
A = min max ———
S, dim(S)=n—k+1 z€Sz#0 (x,x)

» Other 2 versions come from ordering eigenvalues increasingly instead of de-
creasingly.
Write down all 4 versions of the theorem

Use the min-max theorem to show that || A||2 = o1(A) - the largest singular
value of A.
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» Interlacing Theorem: Denote the k X k principal submatrix of A as Ay, with
eigenvalues {A"}%_ . Then

AM > AF T > A S U S Lk S

Example: |\;s = eigenvalues of A, u;’s = eigenvalues of A,,_;:

An }\n—l A3 )\2 A1
&% @ % O k O K% O Kk O Kk O k0
Hn—1 Hn—2 125 1251

» Many uses.

» For example: interlacing theorem for roots of orthogonal polynomials
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The Law of inertia (real symmetric matrices)

» Inertia of a matrix = [m, z, p] with m = number of < 0 eigenvalues, z = number
of zero eigenvalues, and p = number of > 0 eigenvalues.

Sylvester’s Law If X € R™"™ js nonsingular, then A and
of inertia: XT AX have the same inertia.

» Terminology: XTAX is congruent to A

Suppose that A = LDLT where L is unit lower triangular, and D diagonal.
How many negative eigenvalues does A have?

Assume that A is tridiagonal. How many operations are required to determine
the number of negative eigenvalues of A?
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Devise an algorithm based on the inertia theorem to compute the <-th eigen-
value of a tridiagonal matrix.

Let F € R™ " withn < m, and F of rank n.

What is the inertia of the matrix on the right: I F
[Hint: use a block LU factorization] FT 0

» Note 1: Converse result also true: If A and B have same inertia they are
congruent. [This part is easy to show]

> Note 2: result also true for (complex) Hermitian matrices (X* AX has same
inertia as A).
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Bisection algorithm for tridiagonal matrices:

» Goal: to compute i-th eigenvalue of A (tridiagonal)

» Getinterval [a, b] containing spectrum [Gerschgorin]: a < A, < --- < A < b
» Leto = (a + b)/2 = middle of interval

» Calculate p = number of positive eigenvalues of A — oI

elfp>ithen\; € (o, b] > seta:=¢c

a hn Ant o A A, b
[

I ® ® ® s © © L J |

e Elsethen \; € [a, 0] > set b:=0o

» Repeat until b — a is small enough.
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The QR algorithm for symmetric matrices

» Most important method used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

» Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause
HAH" = A,

is symmetric and also of Hessenberg form » it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation

14-10 GvL 8.1-8.2.3 — Eigen3

Practical method

» How to implement the QR algorithm with shifts?

» It is best to use Givens rotations — can do a shifted QR step without explicitly
shifting the matrix..

» Two most popular shifts:

$ = @pnand s = smallestev. of A(n —1:n,n —1:n)
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Jacobi iteration - Symmetric matrices

» Main idea: Rotation matrices of the form

1 0 0 0

0 c s 0 P
J(p,q,0) = i

0 —s c 0 q

0 0 1

¢ = cos 0 and s = sin 0 are so that J(p, q,0)T AJ (p, q, 0) has a zero in position
(p, ) (and also (g, p))

» Frobenius norm of matrix is preserved — but diagonal elements become larger »
convergence to a diagonal.
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> Let B=JTAJ (where J = J,4.0).

2 — s ag— ap
= =T
» Look at 2 x 2 matrix B([p, q], [p, q]) (matlab notation) 2sc 2apq
> Keep in mind that ap; = agp and bpq = bgyp > Lettingt = s/c (=tan@) — quad. equation
t?+21t—1=0
(bpp bpg\ _ [c —s App Apq c s\ _
bgp bgq - \s ¢ Qgqp Qqq —sc) 7
> t=—7++1 2= L __
capp + s%aqq — 25¢ ap, ‘ (2 — s¥)apg — sc(agg — app) T +7 /1472
* | Pagg + sPap, + 2scap, > Select sign to get a smaller t so 6 < /4.
1
» Then: cC=—; s=cxt
2 2 A /1 _|_ t2’
» Want: (c* — s%)apy — sc(agg — app) =0 . L
» Implemented in matlab script jacrot (&, p, q) —
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= A ‘with its diagonal entries

Ap = A — Diag(A
9 9(4) replaced by zeros’

» Define:

» Observations: (1) Unitary transformations preserve ||.||r. (2) Only changes are
in rows and columns p and q.

> LetB=J"AJ
(where J = Jp q,0). Then:

because b,, = 0. Then, a little calculation leads to:

IBollz = IBlIZ — > b3 = Allz — > b
= lAIZ =Y aZ + > ak - > b2
lAoll% + (a2, + a2, — b2, — b2,)

_ 2 2
- ||AO||F - 2apq

2 2 2 _ 12 2 2 _ 12 2
app+aqq+2apq_bpp+bqq+2bpq_bpp+bqq
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» || Ao||F will decrease from one step to the next.

Let ||Ao||1 = INaX;£j |a,,-j|. Show that

lAollr < y/n(n —1)[| Aoz

Use this to show convergence in the case when largest entry is zeroed at each
step.
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