LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods
- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

- Projection techniques Arnoldi, Lanczos, Subspace Iteration;
- Preconditioninings: shift-and-invert, Polynomials, ...
- Deflation and restarting techniques
- Computational codes often combine these three ingredients

A few popular solution Methods

- Subspace Iteration [Now less popular sometimes used for validation]
- Arnoldi's method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for $(A-\sigma I)^{-1}$.]
- Davidson's method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

Projection method onto $oldsymbol{K}$ orthogonal to $oldsymbol{L}$

- \blacktriangleright Given: Two subspaces K and L of same dimension.
- ightharpoonup Approximate eigenpairs $\tilde{\lambda}$, \tilde{u} , obtained by solving:

Find: $ilde{\lambda} \in \mathbb{C}, ilde{u} \in K$ such that $(ilde{\lambda}I - A) ilde{u} \perp L$

Two types of methods:

Orthogonal projection methods: Situation when L = K.

Oblique projection methods: When $L \neq K$.

First situation leads to Rayleigh-Ritz procedure

Rayleigh-Ritz projection

Given: a subspace X known to contain good approximations to eigenvectors of A.

Question: How to extract 'best' approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Orthogonal projection method

- lacksquare Let $Q=[q_1,\ldots,q_m]$ = orthonormal basis of X
- Orthogonal projection method onto X yields:

$$Q^H(A-\tilde{\lambda}I)\tilde{u}=0$$
 $ightarrow$

lacksquare ig| $Q^HAQy= ilde{\lambda}y$ where $ilde{u}=Qy$ Known as Rayleigh Ritz process

Procedure:

- 1. Obtain an orthonormal basis of X
- 2. Compute $C = Q^H A Q$ (an $m \times m$ matrix)
- 3. Obtain Schur factorization of C, $C = YRY^H$
- 4. Compute $ilde{U} = QY$

Property: if X is (exactly) invariant, then procedure will yield exact eigenvalues and eigenvectors.

<u>Proof:</u> Since X is invariant, $(A - \tilde{\lambda}I)u = Qz$ for a certain z. $Q^HQz = 0$ implies z = 0 and therefore $(A - \tilde{\lambda}I)u = 0$.

➤ Can use this procedure in conjunction with the subspace obtained from subspace iteration algorithm

Subspace Iteration

Original idea: projection technique onto a subspace of the form $Y = A^k X$

Practically: A^k replaced by suitable polynomial

Advantages: • Easy to implement (in symmetric case);

Easy to analyze;

Disadvantage: Slow.

ightharpoonup Often used with polynomial acceleration: A^kX replaced by $C_k(A)X$. Typically C_k = Chebyshev polynomial.

Algorithm: Subspace Iteration with Projection

- 1. Start: Choose an initial system of vectors $X = [x_0, \ldots, x_m]$ and an initial polynomial C_k .
- 2. Iterate: Until convergence do:
 - (a) Compute $\hat{Z} = C_k(A)X$. [Simplest case: $\hat{Z} = AX$.]
 - (b) Orthonormalize $\hat{\pmb{Z}}$: $[\pmb{Z},\pmb{R}_Z]=\pmb{q}\pmb{r}(\hat{\pmb{Z}},0)$
 - (c) Compute $B = Z^H A Z$
 - (d) Compute the Schur factorization $B = Y R_B Y^H$ of B
 - (e) Compute X := ZY.
 - (f) Test for convergence. If satisfied stop. Else select a new polynomial $C_{k'}^{\prime}$ and continue.

THEOREM: Let $S_0 = span\{x_1, x_2, \ldots, x_m\}$ and assume that S_0 is such that the vectors $\{Px_i\}_{i=1,\ldots,m}$ are linearly independent where P is the spectral projector associated with $\lambda_1, \ldots, \lambda_m$. Let \mathcal{P}_k the orthogonal projector onto the subspace $S_k = span\{X_k\}$. Then for each eigenvector u_i of A, $i=1,\ldots,m$, there exists a unique vector s_i in the subspace S_0 such that $Ps_i = u_i$. Moreover, the following inequality is satisfied

$$\|(I - \mathcal{P}_k)u_i\|_2 \le \|u_i - s_i\|_2 \left(\left| \frac{\lambda_{m+1}}{\lambda_i} \right| + \epsilon_k \right)^k, \tag{1}$$

where ϵ_k tends to zero as k tends to infinity.

KRYLOV SUBSPACE METHODS

Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

$$K_m(A,v_1)=\mathsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace L
- ightharpoonup Let $\mu=\deg$ of minimal polynom. of v_1 . Then:
 - $K_m = \{p(A)v_1|p = ext{polynomial of degree} \leq m-1\}$
 - $K_m = K_\mu$ for all $m \ge \mu$. Moreover, K_μ is invariant under A.
 - $dim(K_m)=m$ iff $\mu\geq m$.

Arnoldi's algorithm

- \triangleright Goal: to compute an orthogonal basis of K_m .
- ightharpoonup Input: Initial vector v_1 , with $||v_1||_2=1$ and m.

ALGORITHM: 1 • Arnoldi's procedure

For
$$j=1,...,m$$
 do
$$\textit{Compute } w:=Av_j$$
 For $i=1,...,j$, do
$$\begin{cases} h_{i,j}:=(w,v_i)\\ w:=w-h_{i,j}v_i \end{cases}$$
 $h_{j+1,j}=\|w\|_2;$ $v_{j+1}=w/h_{j+1,j}$ End

Based on Gram-Schmidt procedure

Result of Arnoldi's algorithm

Results:

- 1. $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- 2. $AV_m=V_{m+1}\overline{H}_m=V_mH_m+h_{m+1,m}v_{m+1}e_m^T$
- 3. $V_m^T A V_m = H_m \equiv \overline{H}_m$ last row.

Application to eigenvalue problems

- ightharpoonup Write approximate eigenvector as $ilde{u} = V_m y$
- Galerkin condition:

$$(A- ilde{\lambda}I)V_my\perp \mathcal{K}_m \quad o \quad V_m^H(A- ilde{\lambda}I)V_my=0$$

ightharpoonup Approximate eigenvalues are eigenvalues of H_m

$$H_m y_j = ilde{\lambda}_j y_j$$

Associated approximate eigenvectors are

$$ilde{u}_j = V_m y_j$$

Typically a few of the outermost eigenvalues will converge first.

Hermitian case: The Lanczos Algorithm

The Hessenberg matrix becomes tridiagonal:

$$A=A^H$$
 and $V_m^HAV_m=H_m$ $ightarrow H_m=H_m^H$

ightharpoonup Denote H_m by T_m and $ar{H}_m$ by $ar{T}_m$. We can write

ightharpoonup Relation $AV_m=V_{m+1}\overline{T_m}$

Consequence: three term recurrence

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

ALGORITHM: 2 Lanczos

- 1. Choose an initial v_1 with $\|v_1\|_2=1$; Set $eta_1\equiv 0, v_0\equiv 0$
- 2. For j = 1, 2, ..., m Do:
- $3. w_j := Av_j \beta_j v_{j-1}$
- 4. $\alpha_j := (w_j, v_j)$
- $5. w_j := w_j \alpha_j v_j$
- 6. $\beta_{i+1} := \|w_i\|_2$. If $\beta_{i+1} = 0$ then Stop
- 7. $v_{j+1} := w_j/\beta_{j+1}$
- 8. EndDo

Hermitian matrix + Arnoldi → Hermitian Lanczos

- \blacktriangleright In theory v_i 's defined by 3-term recurrence are orthogonal.
- However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

- Full reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's every time.
- Partial reorthogonalization reorthogonalize v_{j+1} against all previous v_i 's only when needed [Parlett & Simon]
- ightharpoonup Selective reorthogonalization reorthogonalize v_{j+1} against computed eigenvectors [Parlett & Scott]
- No reorthogonalization Do not reorthogonalize but take measures to deal with 'spurious' eigenvalues. [Cullum & Willoughby]

Lanczos Bidiagonalization

 \blacktriangleright We now deal with rectangular matrices. Let $A \in \mathbb{R}^{m \times n}$.

ALGORITHM: 3 Golub-Kahan-Lanczos

- 1. Choose an initial v_1 with $\|v_1\|_2=1$; Set $eta_0\equiv 0, u_0\equiv 0$
- 2. For k = 1, ..., p Do:
- 3. $\hat{u} := Av_k \beta_{k-1}u_{k-1}$
- 4. $\alpha_k = \|\hat{u}\|_2$; $u_k = \hat{u}/\alpha_k$
- $5. \qquad \hat{v} = A^T u_k \alpha_k v_k$
- 6. $\beta_k = \|\hat{v}\|_2$; $v_{k+1} := \hat{v}/\beta_k$
- 7. EndDo

Let: $egin{aligned} V_{p+1} &= [v_1,v_2,\cdots,v_{p+1}] &\in \mathbb{R}^{n imes(p+1)} \ U_p &= [u_1,u_2,\cdots,u_p] &\in \mathbb{R}^{m imes p} \end{aligned}$

$$B_p = egin{bmatrix} lpha_1 & eta_1 & & & & \ & lpha_2 & eta_2 & & & \ & \ddots & \ddots & & \ & & \ddots & \ddots & \ & & & lpha_n & eta_n \end{bmatrix}$$

Let:

$$\blacktriangleright \hat{B}_p = B_p(:, 1:p)$$

$$egin{aligned} igwedge \hat{B}_p &= B_p(:,1:p) \ igwedge V_p &= [v_1,v_2,\cdots,v_p] \ \in \mathbb{R}^{n imes p} \end{aligned}$$

Result:

$$egin{array}{ll} A^T(AV_p) &= A^T(U_p\hat{B}_p) \ &= V_{p+1}B_p^T\hat{B}_p \end{array}$$

- $ightharpoonup B_p^T \hat{B}_p$ is a (symmetric) tridiagonal matrix of size (p+1) imes p
- ightharpoonup Call this matrix $\overline{T_k}$. Then:

$$(A^TA)V_p = V_{p+1}\overline{T_p}$$

- Standard Lanczos relation!
- \triangleright Algorithm is equivalent to standard Lanczos applied to A^TA .
- ightharpoonup Similar result for the u_i 's [involves AA^T]
- Mork out the details: What are the entries of $ar{T}_p$ relative to those of B_p ?