LARGE SPARSE EIGENVALUE PROBLEMS

- Projection methods

- The subspace iteration
- Krylov subspace methods: Arnoldi and Lanczos
- Golub-Kahan-Lanczos bidiagonalization

General Tools for Solving Large Eigen-Problems

> Projection techniques - Arnoldi, Lanczos, Subspace Iteration;
> Preconditioninings: shift-and-invert, Polynomials, ...
> Deflation and restarting techniques
$>$ Computational codes often combine these three ingredients

A few popular solution Methods

- Subspace Iteration [Now less popular - sometimes used for validation]
- Arnoldi's method (or Lanczos) with polynomial acceleration
- Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for (\boldsymbol{A} $\sigma I)^{-1}$.]
- Davidson's method and variants, Jacobi-Davidson
- Specialized method: Automatic Multilevel Substructuring (AMLS).

Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L

$>$ Given: Two subspaces K and L of same dimension.
$>$ Approximate eigenpairs $\boldsymbol{\lambda}, \tilde{u}$, obtained by solving:

```
Find:\tilde{\boldsymbol{\lambda}}\in\mathbb{C},\tilde{\boldsymbol{u}}\inK}\mathrm{ such that( }\tilde{\boldsymbol{\lambda}}I=A)\tilde{\boldsymbol{u}}\perp
```

> Two types of methods:
Orthogonal projection methods: Situation when $L=\boldsymbol{K}$.
Oblique projection methods: When $\boldsymbol{L} \neq \boldsymbol{K}$.
> First situation leads to Rayleigh-Ritz procedure

Rayleigh-Ritz projection

Procedure:

1. Obtain an orthonormal basis of X
2. Compute $C=Q^{H} A Q$ (an $m \times m$ matrix)

Given: a subspace \boldsymbol{X} known to contain good approximations to eigenvectors of A.

Question: How to extract 'best' approximations to eigenvalues/ eigenvectors from this subspace?

Answer: Orthogonal projection method
$>$ Let $\boldsymbol{Q}=\left[\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right]=$ orthonormal basis of \boldsymbol{X}
$>$ Orthogonal projection method onto \boldsymbol{X} yields:

$$
Q^{H}(A-\tilde{\lambda} I) \tilde{u}=0 \rightarrow
$$

$>Q^{H} A Q y=\tilde{\lambda} y$ where $\tilde{u}=Q y$ Known as Rayleigh Ritz process
$\xlongequal{15-5}$
Gvil 10.1,10.5.1 - Sparse
15-6 Gvil 10.1,10.5.1 - Sparse
Algorithm: Subspace Iteration with Projection

1. Start: Choose an initial system of vectors $\boldsymbol{X}=\left[x_{0}, \ldots, x_{m}\right]$ and an initial polynomial C_{k}.
2. Iterate: Until convergence do:
(a) Compute $\hat{Z}=C_{k}(A) X . \quad[$ Simplest case: $\hat{\boldsymbol{Z}}=\boldsymbol{A X}$.]
(b) Orthonormalize \hat{Z} : $\left[Z, R_{Z}\right]=q r(\hat{Z}, 0)$
(c) Compute $\boldsymbol{B}=\boldsymbol{Z}^{H} \boldsymbol{A} \boldsymbol{Z}$
(d) Compute the Schur factorization $B=\boldsymbol{Y} \boldsymbol{R}_{B} \boldsymbol{Y}^{H}$ of B
(e) Compute $\boldsymbol{X}:=Z Y$.
(f) Test for convergence. If satisfied stop. Else select a new polynomial $C_{k^{\prime}}^{\prime}$ and continue.

THEOREM: Let $S_{0}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and assume that S_{0} is such that the vectors $\left\{P x_{i}\right\}_{i=1, \ldots, m}$ are linearly independent where P is the spectral projector associated with $\lambda_{1}, \ldots, \lambda_{m}$. Let \mathcal{P}_{k} the orthogonal projector onto the subspace $S_{k}=\operatorname{span}\left\{X_{k}\right\}$. Then for each eigenvector u_{i} of $A, i=1, \ldots, m$, there exists a unique vector s_{i} in the subspace S_{0} such that $P s_{i}=u_{i}$. Moreover, the following inequality is satisfied

$$
\begin{equation*}
\left\|\left(I-\mathcal{P}_{k}\right) u_{i}\right\|_{2} \leq\left\|u_{i}-s_{i}\right\|_{2}\left(\left|\frac{\lambda_{m+1}}{\lambda_{i}}\right|+\epsilon_{k}\right)^{k} \tag{1}
\end{equation*}
$$

where ϵ_{k} tends to zero as k tends to infinity.

Krylov subspace methods
Principle: Projection methods on Krylov subspaces:

$$
\boldsymbol{K}_{m}\left(\boldsymbol{A}, \boldsymbol{v}_{1}\right)=\operatorname{span}\left\{\boldsymbol{v}_{1}, \boldsymbol{A} \boldsymbol{v}_{1}, \cdots, \boldsymbol{A}^{m-1} \boldsymbol{v}_{1}\right\}
$$

- The most important class of projection methods [for linear systems and for eigenvalue problems]
- Variants depend on the subspace L
$>$ Let $\mu=$ deg. of minimal polynom. of v_{1}. Then:
- $\boldsymbol{K}_{m}=\left\{\boldsymbol{p}(\boldsymbol{A}) \boldsymbol{v}_{1} \mid \boldsymbol{p}=\right.$ polynomial of degree $\left.\leq m-1\right\}$
- $\boldsymbol{K}_{m}=\boldsymbol{K}_{\mu}$ for all $m \geq \boldsymbol{\mu}$. Moreover, \boldsymbol{K}_{μ} is invariant under \boldsymbol{A}.
- $\operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.

15-11

Arnoldi's algorithm

$>$ Goal: to compute an orthogonal basis of \boldsymbol{K}_{m}.
$>$ Input: Initial vector v_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.
ALGORITHM : 1. Arnoldi's procedure

$$
\begin{aligned}
& \text { For } j=1, \ldots, m \text { do } \\
& \qquad \begin{array}{l}
\text { Compute } w:=A v_{j}
\end{array} \\
& \qquad \begin{array}{l}
\text { For } i=1, \ldots, j \text {, do }
\end{array} \quad\left\{\begin{array}{l}
h_{i, j}:=\left(w, v_{i}\right) \\
w:=w-h_{i, j} v_{i}
\end{array}\right. \\
& h_{j+1, j}=\|w\|_{2} ; \\
& v_{j+1}=w / h_{j+1, j} \\
& \text { End }
\end{aligned}
$$

[^0]
Result of Arnoldi's algorithm

$$
\text { Let: } \bar{H}_{m}=\left(\begin{array}{lllll}
x & x & x & x & x \\
x & x & x & x & x \\
& x & x & x & x \\
& & x & x & x \\
& & & x & x \\
& & & & x
\end{array}\right), \boldsymbol{H}_{m}=\left(\begin{array}{cllll}
x & x & x & x & x \\
x & x & x & x & x \\
& x & x & x & x \\
& & x & x & x \\
& & & x & x
\end{array}\right)
$$

Results:

1. $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ orthonormal basis of \boldsymbol{K}_{m}.
2. $A V_{m}=V_{m+1} \overline{\boldsymbol{H}}_{m}=V_{m} \boldsymbol{H}_{m}+h_{m+1, m} v_{m+1} e_{m}^{T}$
3. $\boldsymbol{V}_{m}^{T} \boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{H}_{m} \equiv \overline{\boldsymbol{H}}_{m}$ - last row.
${ }^{15-13}$

Hermitian case: The Lanczos Algorithm

> The Hessenberg matrix becomes tridiagonal :

$$
A=A^{H} \quad \text { and } \quad V_{m}^{H} A V_{m}=H_{m} \quad \rightarrow H_{m}=H_{m}^{H}
$$

$>$ Denote \boldsymbol{H}_{m} by \boldsymbol{T}_{m} and $\overline{\boldsymbol{H}}_{m}$ by $\overline{\boldsymbol{T}}_{m}$. We can write

$$
T_{m}=\left(\begin{array}{ccccccc}
\alpha_{1} & \beta_{2} & & & & \\
\boldsymbol{\beta}_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \\
& & & & \beta_{m} & \alpha_{m}
\end{array}\right)
$$

$>$ Relation $A V_{m}=V_{m+1} \overline{T_{m}}$
$\xrightarrow{15-15}$

Application to eigenvalue problems

> Write approximate eigenvector as $\tilde{u}=V_{\boldsymbol{m}} \boldsymbol{y}$
> Galerkin condition:

$$
(A-\tilde{\lambda} I) V_{m} y \perp \mathcal{K}_{m} \quad \rightarrow \quad V_{m}^{H}(A-\tilde{\lambda} I) V_{m} y=0
$$

$>$ Approximate eigenvalues are eigenvalues of \boldsymbol{H}_{m}

$$
\boldsymbol{H}_{m} \boldsymbol{y}_{j}=\tilde{\boldsymbol{\lambda}}_{j} \boldsymbol{y}_{j}
$$

> Associated approximate eigenvectors are

$$
\tilde{u}_{j}=V_{m} y_{j}
$$

> Typically a few of the outermost eigenvalues will converge first. 15-14
Consequence: three term recurrence

$$
\beta_{j+1} v_{j+1}=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1}
$$

ALGORITHM : 2 . Lanczos

1. Choose an initial v_{1} with $\left\|v_{1}\right\|_{2}=1$;

$$
\operatorname{Set} \beta_{1} \equiv 0, v_{0} \equiv 0
$$

2. For $j=1,2, \ldots, m$ Do
3. $\boldsymbol{w}_{j}:=A \boldsymbol{v}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{v}_{j-1}$
4. $\alpha_{j}:=\left(w_{j}, v_{j}\right)$
5. $\quad w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\quad \boldsymbol{\beta}_{j+1}:=\left\|\boldsymbol{w}_{j}\right\|_{2}$. If $\boldsymbol{\beta}_{j+1}=0$ then Stop $\boldsymbol{v}_{j+1}:=\boldsymbol{w}_{j} / \boldsymbol{\beta}_{j+1}$
EndDo
Hermitian matrix + Arnoldi \rightarrow Hermitian Lanczos
$>$ In theory v_{i} 's defined by 3-term recurrence are orthogonal.
> However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first eigenpair has converged. It is a sign of loss of linear independence of the computed eigenvectors. When orthogonality is lost, then several the copies of the same eigenvalue start appearing.

Reorthogonalization

$>$ Full reorthogonalization - reorthogonalize v_{j+1} against all previous v_{i} 's every time.
$>$ Partial reorthogonalization - reorthogonalize \boldsymbol{v}_{j+1} against all previous v_{i} 's only when needed [Parlett \& Simon]
$>$ Selective reorthogonalization - reorthogonalize \boldsymbol{v}_{j+1} against computed eigenvectors [Parlett \& Scott]
$>$ No reorthogonalization - Do not reorthogonalize - but take measures to deal with 'spurious' eigenvalues. [Cullum \& Willoughby]

Lanczos Bidiagonalization
$>$ We now deal with rectangular matrices. Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$.
ALGORITHM : 3. Golub-Kahan-Lanczos \qquad

1. Choose an initial v_{1} with $\left\|v_{1}\right\|_{2}=1$; Set $\beta_{0} \equiv 0, u_{0} \equiv 0$
2. For $k=1, \ldots, p$ Do:
3. $\hat{\boldsymbol{u}}:=\boldsymbol{A} \boldsymbol{v}_{k}-\boldsymbol{\beta}_{k-1} \boldsymbol{u}_{k-1}$
4. $\quad \alpha_{k}=\|\hat{u}\|_{2} ; \quad u_{k}=\hat{u} / \alpha_{k}$
5. $\quad \hat{v}=A^{T} u_{k}-\alpha_{k} v_{k}$
6. $\quad \boldsymbol{\beta}_{k}=\|\hat{\boldsymbol{v}}\|_{2} ; \quad \boldsymbol{v}_{k+1}:=\hat{\boldsymbol{v}} / \boldsymbol{\beta}_{k}$
7. EndDo

$$
\boldsymbol{B}_{p}=\left[\begin{array}{cccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{1} & & & & \\
& \boldsymbol{\alpha}_{2} & \boldsymbol{\beta}_{2} & & & \\
& & \ddots & \ddots & & \\
& & & \ddots & \ddots & \\
& & & & \boldsymbol{\alpha}_{p} & \boldsymbol{\beta}_{p}
\end{array}\right]
$$

$>\hat{B}_{p}=B_{p}(:, 1: p)$
$>V_{p}=\left[\boldsymbol{v}_{1}, v_{2}, \cdots, v_{p}\right] \in \mathbb{R}^{n \times p}$

Result:

$$
\begin{array}{|l}
\hline>V_{p+1}^{T} V_{p+1}=I \\
>U_{p}^{T} U_{p}=I \\
> \\
>A V_{p}=U_{p} \hat{B}_{p} \\
> \\
A^{T} U_{p}=V_{p+1} B_{p}^{T} \\
\hline
\end{array}
$$

$$
\begin{aligned}
& V_{p+1}=\left[v_{1}, \boldsymbol{v}_{2}, \cdots, v_{p+1}\right] \\
& \in \mathbb{R}^{n \times(p+1)} \\
& \boldsymbol{U}_{p}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \cdots, \boldsymbol{u}_{p}\right] \\
& \in \mathbb{R}^{m \times p}
\end{aligned}
$$

> Observe that:

$$
\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{V}_{p}\right)=\boldsymbol{A}^{T}\left(\boldsymbol{U}_{p} \hat{\boldsymbol{B}}_{p}\right)
$$

$$
=V_{p+1} B_{p}^{T} \hat{B}_{p}
$$

$>B_{p}^{T} \hat{B}_{p}$ is a (symmetric) tridiagonal matrix of size $(p+1) \times p$
$>$ Call this matrix $\overline{T_{k}}$. Then:

$$
\left(A^{T} A\right) V_{p}=V_{p+1} \overline{T_{p}}
$$

> Standard Lanczos relation!
> Algorithm is equivalent to standard Lanczos applied to $\boldsymbol{A}^{T} \boldsymbol{A}$.
$>$ Similar result for the \boldsymbol{u}_{i} 's [involves $\boldsymbol{A} \boldsymbol{A}^{T}$]
W1 Work out the details: What are the entries of \bar{T}_{p} relative to those of B_{p} ?

[^0]: > Based on Gram-Schmidt procedure

