

C S C I 5304

About this class. Instructor and Teaching Assistant
> Me: Yousef Saad
> TA: Zechen Zhang

- Course title:
"Computational Aspects of Matrix Theory"

Class time : TTh 8:15-9:30 am
 Room : Keller H. 3-125
 Instructor : Yousef Saad

http://www-users.cse.umn.edu/~saad/csci5304/

What you will learn and why material is important

- Alternative title:

Who is in this class today?
"Theoretical Aspects of Matrix Computations"
... a longer title:
"Everything you need to know about computations involving matrices, that you can learn in one semester - from theory to algorithms, matlab/Python implementations, and applications."
$>$ Subject is at the core of *most* disciplines requiring numerical computing. $>$.. and gaining importance in Computer Science (machine learning, robotics, graphics, ...)
$>$ Out of ≈ 60 [excluding Unite]

- 27 in Computer Science [all levels]
-19 Mechanical Engineering
- 6 Electrical Eng
- 2 Computer Engineering
- 2 Aerospace Eng
- 2 Statistics
- 1 each in: Math, Neuroscience, Data Science
- 14 Undergraduate students
- 21 PhD students + 25 MS $\rightarrow 46$ Grad.

Objectives of this course

Set 1 Fundamentals of matrix theory:

- Matrices, subspaces, eigenvectors
- Norms, matrix norms, understanding errors, sensitivity [somewhat theoretical]
- Various decompositions, LU, QR, SVD, ..
set 2 Computational linear algebra / Algorithms
- Solving linear systems, LU factorization
- Solving least-squares problems, QR factorization
- Eigenvalue problems - computing eigenvalues, eigenvectors,

Set 3 Linear algebra in applications

- See how numerical linear algebra is used to solve problems in (a few) computer science-related applications.
- Examples: page-rank, applications in optimization, information retrieval, applications in machine learning, control, ...

Logistics:

- Lecture notes, syllabus, schedule, a matlab/Python folder, and some basic information, can be found here:
http://www-users.cse.umn.edu/~saad/csci5304
- Everything else will be found on Canvas: Homeworks, exam/quizzes info, your grades, etc..
> The two sites have links to each other

1-6

Please Note:

> Homeworks, tests, and their solutions are copyrighted

- Solutions of HWs and tests are provided to you [Canvas] with the hope of helping you understand the material better. By accessing them you agree not to send them to others, sell them (\%\#!!\$), or otherwise (help) make them available via external web-sites.

About lecture notes:

> Lecture notes (like this first set) will be posted on the class web-site - usually before the lecture. Note: format of notes used in class may be slightly different from the one posted - but contents are identical.
> Review them to get some understanding if possible before class
>Read the relevant section (s) in one of the references listed
$>$ Lecture note sets are grouped by topics rather than by lecture.
$>$ In the notes the symbol indicates suggested easy exercises or questions sometimes solved in class. Each set will have a supplement which includes solutions to some of these exercises + possibly additional notes/comments.

Matlab and Python

> You will need to use matlab for testing algorithms.
> New this year: for those interested you can turn in your codes for assignments in Python+numpy. + demos often in both
> Some documentation is posted in the (class) matlab folder - No documentation for Python
> Important: I post the matlab diaries used for the demos (if any)..
> .. working on something similar for Python [under IPython]

- If you do not know matlab at all and have difficulties with it - and you do not know python - talk to me or the TA at office hours. All you may need is some initial help to get you started with matlab.

Occasional in-class practice exercises

$>$ Posted in advance - [Canvas]
$>$ Do them before class. No need to turn in anything.
> ... will be discussed - typically at beginning of class

Final remarks on lecture notes

> Please do not hesitate to report errors and/or provide feedback on content.
$>$ On occasion I will repost lecture notes with changes/additions

How to study for this course:

1) Rely primarily on lecture notes as a starting point. Use other sources [e.g., (online) books] to get a deeper understanding.
2) Do the practice exercises indicated in lecture notes + the occasional practice exercise sets before class.
3) Ask questions! Participate in discussions (office hours, canvas, ...)

Covid, Zoom, Canvas, etc

GENERAL INTRODUCTION

> We are no longer required to wear masks but ...
> ... you are still encougared to wear one - especially in class
$>$ If you are sick *please* do not come to class [there is really no need] !!
> Read syllabus info on rules for Covid/ Masks/ etc.
> If I get sick - I will schedule the class on Zoom [If I can!] -
$>$ Office hours: Mixed mode both for instructor and TA - latest info in syllabus.
YS: First 30mn zoom - then in person, ZZ: Mon. via zoom - Fri. in person
> Office hours open to all (No "waiting room" for the Zoom parts). W'll see how this works and adjusts as needed.

Introduction

> This course is about Matrix algorithms or "matrix computations"
> It involves: algorithms for standard matrix computations (e.g. solving linear systems) - and their analysis (e.g., their cost, numerical behavior, ..)
> Matrix algorithms pervade most areas of science and engineering
> In computer science: recent increase of interest in matrix algorithms for data mining, information retrieval, search engines, pattern recognition, graphics, ...

- Background: Linear algebra and numerical linear algebra

- Types of problems to be seen in this course
- Mathematical background - matrices, eigenvalues, rank, ...
- Types of matrices, structutred matrices,

Examples

> Modern version of an old problem
A set of 12 coins containing nickels (5 c each), dimes (10 c each) and quarters (25c each) totals to $\$ 1.45$. In addition, the total without the nickels amounts to $\$ 1.25$. How many of each coin are there?
> Problem type: Linear system
Solution: The system you get is: $\left(\begin{array}{ccc}5 & 10 & 25 \\ 1 & 1 & 1 \\ 0 & 10 & 25\end{array}\right)\left(\begin{array}{l}x_{n} \\ x_{d} \\ x_{q}\end{array}\right)=\left(\begin{array}{c}145 \\ 12 \\ 125\end{array}\right)$
where $x_{n}=\#$ nickels, $x_{d}=\#$ dimes, $x_{q}=\#$ quartersAnd the solution is: ?
$>$ Pagerank of Webpages (21st cent AD)

If one were to do a random walk from web page to web page, following each link on a given web page at random with equal likelihood, which are the pages to be encountered this way most often?

$>$ Problem type: (homogeneous) Linear system. Eigenvector problem.

1-17
Examples (cont.)
> Method of least-squares (inspired by first use of least squares ever, by Gauss around 1801)

A planet follows an elliptical orbit according to $a y^{2}+b x y+c x+d y+e=x^{2}$ in cartesian coordinates. Given a set of noisy observations of (x, y) positions, compute a, b, c, d, e, and use to predict future positions of the planet. This least squares problem is nearly rank-deficient and hence very sensitive to perturbations in the observations.
> Problem type: Least-Squares system
Read Wikipedia's article on planet ceres:
http://en.wikipedia.org/wiki/Ceres_(dwarf_planet)
Law ($\boldsymbol{V}=\boldsymbol{R} \boldsymbol{I}$)
> Problem type: Linear System

Dynamical systems and epidemiology

A set of variables that fill a vector y are governed by the equation

$$
\frac{d y}{d t}=A y
$$

Determine $y(t)$ for $t>0$, given $y(0)$ [called 'orbit' of y]
> Problem type: (Linear) system of ordinary differential equations.

Solution:

$$
y(t)=e^{t A} y(0)
$$

$>$ Involves exponential of \boldsymbol{A} [think Taylor series], i.e., a matrix function

1-21

GvL: 1.1-1.3, 2.1. - Background
Example: The SIR model in epidemiology
A population of N individuals, with $N=S+I+R$ where:Susceptible population. These are susecptible to being contaminated by others (not immune).

I Infectious population: will contaminate susceptible individuals.
R 'Removed' population: either deceased or recovered. These will no longer contaminate others.

Three

equations:

$$
\frac{d S}{d t}=-\beta I S ; \quad \frac{d I}{d t}=(\beta S-\mu) I ; \quad \frac{d R}{d t}=\mu I
$$

$1 / \mu=$ infection period [e.g. 5 days].
$\beta=\mu R_{0} / N$ where $R_{0}=$ reproduction number.
$>$ This is the simplest form of dynamical systems (linear).
> Consider the slightly more complex system:

$$
\frac{d y}{d t}=A(y) y
$$

> Nonlinear. Requires 'integration scheme'.
> Next: a little digression into our interesting times...
\qquad
The importance of reducing \boldsymbol{R}_{0} (a.k.a. "social distancing")

Typical Large-scale problem (e.g. Fluid flow)

Physical Model
 Linearization (Newton)

\downarrow

Background in linear algebra

> Review vector spaces.
$>$ A vector subspace of \mathbb{R}^{n} is a subset of \mathbb{R}^{n} that is also a real vector space. The set of all linear combinations of a set of vectors $G=\left\{a_{1}, a_{2}, \ldots, a_{q}\right\}$ of \mathbb{R}^{n} is a vector subspace called the linear span of G,
$>$ If the a_{i} 's are linearly independent, then each vector of $\operatorname{span}\{G\}$ admits a unique expression as a linear combination of the a_{i} 's. The set G is then called a basis.Recommended reading: Sections $1.1-1.6$ of
www.cs.umn.edu/~saad/eig_book_2ndEd.pdf

Matrices

$>$ A real $m \times n$ matrix \boldsymbol{A} is an $\boldsymbol{m} \times n$ array of real numbers

$$
a_{i j}, \quad i=1, \ldots, m, j=1, \ldots, n .
$$

Set of $m \times n$ matrices is a real vector space denoted by $\mathbb{R}^{m \times n}$.
$>$ Complex matrices defined similarly.

- A matrix represents a linear mapping between two vector spaces of finite dimension n and m

$$
x \in \mathbb{R}^{n} \longrightarrow y=A x \in \mathbb{R}^{m}
$$

$>$ Recall: this mapping is linear [what does it mean?]
$>$ Recall: Any linear mapping from \mathbb{R}^{n} to \mathbb{R}^{m} *is* a matrix vector product

Operations:
Addition: $C=A+B$, where $A, B, C \in \mathbb{R}^{m \times n}$ and

$$
c_{i j}=a_{i j}+b_{i j}, \quad i=1,2, \ldots m, \quad j=1,2, \ldots n
$$

Multiplication by a scalar: $C=\alpha A$, where

$$
c_{i j}=\alpha a_{i j}, \quad i=1,2, \ldots m, \quad j=1,2, \ldots n
$$

Multiplication by another matrix: $C=A B$,
where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{B} \in \mathbb{R}^{n \times p}, \boldsymbol{C} \in \mathbb{R}^{m \times p}$, and

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Transposition: If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ then its transpose is a matrix $C \in \mathbb{R}^{n \times m}$ with
entries

$$
c_{i j}=a_{j i}, i=1, \ldots, n, j=1, \ldots, m
$$

Notation: \boldsymbol{A}^{T}.
Transpose Conjugate: for complex matrices, the transpose conjugate matrix denoted by A^{H} is more relevant: $A^{H}=\bar{A}^{T}=\overline{A^{T}}$.

(470 $(A B C)^{T}=?$?True/False: $(A B) C=A(B C)$True/False: $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$
True/False: $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{A}^{T} \boldsymbol{A}$

Matrix-vector product: computing $y=\boldsymbol{A} x$

$$
\boldsymbol{C}=\sum_{k=1}^{n} \boldsymbol{A}_{:, k} \boldsymbol{B}_{k,:}
$$

Verify all 3 formulas above..Complexity? [number of multiplications and additions]What happens to these 3 different approches to matrix-matrix multiplication when B has one column $(p=1)$?Characterize the matrices $\boldsymbol{A} \boldsymbol{A}^{T}$ and $\boldsymbol{A}^{T} \boldsymbol{A}$ when \boldsymbol{A} is of dimension $\boldsymbol{n} \times 1$.

Column-form:

Linear combination of columns $A(:, j)$ with coefficients x_{j} yields y

Row-form:

Dot product of $A(i,:)$ and x gives y_{i}
$>$ Can do it as a sum of 'outer-product' matrices:

Characterize the marices $A A^{T}$ and $A^{T} A$ when A is of dimension $n \times 1$.


```
Range and null space (for }A\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ ) }\quad|\begin{array}{l}{\mathrm{ Rank+Nullity theorem }}\\{\mathrm{ for an m }m\timesn\mathrm{ matrix:}}
R Range: Ran(A)={Ax|x\in\mp@subsup{\mathbb{R}}{}{n}}\subseteq\mp@subsup{\mathbb{R}}{}{m}
Null Space: }\quad\operatorname{Null(A)}={x\in\mp@subsup{\mathbb{R}}{}{n}|Ax=0}\subseteq\mp@subsup{\mathbb{R}}{}{n
Range = linear span of the columns of }\boldsymbol{A
Rank of a matrix }\quad\operatorname{rank}(A)=\operatorname{dim}(\operatorname{Ran}(A)) \leq
>Ran}(A)\subseteq\mp@subsup{\mathbb{R}}{}{m}->\operatorname{rank}(A)\leqm
rank (A)\leqmin{m,n}
\(>\operatorname{rank}(\boldsymbol{A})=\) number of linearly independent columns of \(\boldsymbol{A}=\) number of linearly independent rows of \(A\)
\(>A\) is of full rank if \(\operatorname{rank}(A)=\min \{m, n\}\). Otherwise it is rank-deficient.
\(\qquad\)
``` GvL: 1.1-1.3, 2.1. - Background
Show that \(A \in \mathbb{R}^{m \times n}\) is of rank one iff [if and only if] there exist two nonzero vectors \(u \in \mathbb{R}^{m}\) and \(\boldsymbol{v} \in \mathbb{R}^{n}\) such that
\[
A=u v^{T}
\]
What are the eigenvalues and eigenvectors of \(\boldsymbol{A}\) ?
```

Rank+Nullity theorem for an $m \times n$ matrix:
$\operatorname{dim}(\operatorname{Ran}(A))+\operatorname{dim}(\operatorname{Null}(A))=n$

Apply to $A^{T}: \operatorname{dim}\left(\operatorname{Ran}\left(A^{T}\right)\right)+\operatorname{dim}\left(\operatorname{Null}\left(A^{T}\right)\right)=m \rightarrow$

$$
\operatorname{rank}(A)+\operatorname{dim}\left(N u l l\left(A^{T}\right)\right)=m
$$

$>$ Terminology:

- $\operatorname{dim}(\operatorname{Null}(A))$ is the Nullity of $A$ [Another term: co-rank]

1-34 $\qquad$ GvL: 1.1-1.3, 2.1. - BackgroundFind the range and null space of the following matrix: Verify your result with matlab [hint: use null, rank, rref]

$$
\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 2 & 3 \\
1 & -2 & -1 \\
2 & -1 & 1
\end{array}\right)
$$Is it true that

$$
\operatorname{rank}(A)=\operatorname{rank}(\bar{A})=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}\left(A^{H}\right) ?
$$

Matlab exercise: explore the matlab function rank.Matlab exercise: explore the matlab function rref.
$>$ No rref function in numpy - [see sympy]

## Square matrices, matrix inversion, eigenvalues

## Eigenvalues and eigenvectors

> Square matrix: $n=m$, i.e., $A \in \mathbb{R}^{n \times n}$
> Identity matrix: square matrix with

$$
a_{i j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { otherwise }
\end{array}\right.
$$

$>$ Notation: $I$.
> Property: $\boldsymbol{A I}=\boldsymbol{I} \boldsymbol{A}=\boldsymbol{A}$
$>$ Inverse of $\boldsymbol{A}$ (when it exists) is a matrix $\boldsymbol{C}$ such that

$$
A C=C A=I
$$

Notation: $\boldsymbol{A}^{-1}$.

1-37
GvL: 1.1-1.3, 2.1. - Background
Eigenvalues/vectors
$>$ An eigenvalue is a root of the Characteristic polynomial:

$$
p_{A}(\lambda)=\operatorname{det}(A-\lambda I)
$$

$>$ So there are $n$ eigenvalues (counted with their multiplicities).
$>$ The multiplicity of these eigenvalues as roots of $p_{A}$ are called algebraic multiplicities.
$>$ The geometric multiplicity of an eigenvalue $\boldsymbol{\lambda}_{i}$ is the number of linearly independent eigenvectors associated with $\boldsymbol{\lambda}_{i}$.
$>$ Geometric multiplicity is $\leq$ algebraic multiplicity.
$>$ An eigenvalue is simple if its (algebraic) multiplicity is one. It is semi-simple if its geometric and algebraic multiplicities are equal.

A complex scalar $\boldsymbol{\lambda}$ is called an eigenvalue of a square matrix $\boldsymbol{A}$ if there exists a nonzero vector $\boldsymbol{u}$ in $\mathbb{C}^{n}$ such that $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{u}$. The vector $\boldsymbol{u}$ is called an eigenvector of $\boldsymbol{A}$ associated with $\boldsymbol{\lambda}$. The set of all eigenvalues of $\boldsymbol{A}$ is the 'spectrum' of $\boldsymbol{A}$. Notation: $\Lambda(A)$.
$>\lambda$ is an eigenvalue iff the columns of $\boldsymbol{A}-\boldsymbol{\lambda} \boldsymbol{I}$ are linearly dependent
> ... equivalent to saying that its rows are linearly dependent. So: there is a nonzero vector $\boldsymbol{w}$ such that

$$
w^{H}(A-\lambda I)=0
$$

$>\boldsymbol{w}$ is a left eigenvector of $\boldsymbol{A}$ ( $\boldsymbol{u}=$ right eigenvector)
$>\lambda$ is an eigenvalue iff $\operatorname{det}(\boldsymbol{A}-\lambda I)=0$
$>$ Two matrices $\boldsymbol{A}$ and $\boldsymbol{B}$ are similar if there exists a nonsingular matrix $\boldsymbol{X}$ such that $\boldsymbol{A}=\boldsymbol{X} \boldsymbol{B} \boldsymbol{X}^{-1}$
$\alpha_{20}$ Eigenvalues of $\boldsymbol{A}$ and $\boldsymbol{B}$ are the same. What about eigenvectors?
$>$ Note: $\boldsymbol{A}$ and $\boldsymbol{B}$ represent the same mapping using 2 different bases.
Fundamental Problem: Given $\boldsymbol{A}$, find $\boldsymbol{X}$ so that $\boldsymbol{B}$ has a simpler structure (e.g., diagonal) $\rightarrow$ Eigenvalues of $\boldsymbol{B}$ easier to compute

Definition:
$\boldsymbol{A}$ is diagonalizable if it is similar to a diagonal matrix
> We will revisit these notions later in the semesterGiven a polynomial $p(t)$ how would you define $p(A)$ ?Given a function $f(t)$ (e.g., $e^{t}$ ) how would you define $f(A)$ ? [Leave the full justification for next chapter]If $\boldsymbol{A}$ is nonsingular what are the eigenvalues/eigenvectors of $\boldsymbol{A}^{-1}$ ?
What are the eigenvalues/eigenvectors of $A^{k}$ for a given integer power $k$ ?What are the eigenvalues/eigenvectors of $p(A)$ for a polynomial $p$ ?What are the eigenvalues/eigenvectors of $f(A)$ for a function $f$ ? [Diagonalizable case]For two $n \times n$ matrices $A$ and $B$ are the eigenvalues of $\boldsymbol{A} \boldsymbol{B}$ and $\boldsymbol{B} \boldsymbol{A}$ the same?

228 Review the Jordan canonical form. [Short description in sec. 1.8.2 of http://www.cs.umn.edu/~saad/eig_book_2ndEd.pdf
Define the eigenvalues, and eigenvectors from the Jordan form.

Types of (square) matrices

- Symmetric $\boldsymbol{A}^{T}=\boldsymbol{A}$. - Skew-symmetric $\boldsymbol{A}^{T}=-\boldsymbol{A}$.
- Hermitian $\boldsymbol{A}^{\boldsymbol{H}}=\boldsymbol{A}$. $\quad$ Skew-Hermitian $\boldsymbol{A}^{H}=-\boldsymbol{A}$.
- Normal $A^{H} A=A A^{H}$.
- Nonnegative $a_{i j} \geq 0, i, j=1, \ldots, n$
- Similarly for nonpositive, positive, and negative matrices
- Unitary $Q^{H} Q=I$. (for complex matrices)
$>$ Spectral radius $=$ The maximum modulus of the eigenvalues

$$
\rho(A)=\max _{\lambda \in \lambda(A)}|\lambda|
$$

$>$ Trace of $\boldsymbol{A}=$ sum of diagonal elements of $\boldsymbol{A}$.

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} a_{i i}
$$

$>\operatorname{tr}(A)=$ sum of all the eigenvalues of $A$ counted with their multiplicities.
$>$ Recall that $\operatorname{det}(\boldsymbol{A})=$ product of all the eigenvalues of $\boldsymbol{A}$ counted with their multiplicities.Trace, spectral radius, and determinant of

$$
A=\left(\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right)
$$

[Note: Common useage restricts this definition to complex matrices. An orthogonal matrix is a unitary real matrix - not very natural ]

- Orthogonal $Q^{T} Q=I$ [orthonormal columns]
[I will sometimes call unitary matrix a square matrix with orthonormal columns, regardless on whether it is real or complex]
> The term "orthonormal" matrix is rarely used.
( 30 What is the inverse of a unitary (complex) or orthogonal (real) matrix?What can you say about the diagonal entries of a skew-symmetric (real) matrix?What can you say about the diagonal entries of a Hermitian (complex) matrix?What can you say about the diagonal entries of a skew-Hermitian (complex) matrix?Which matrices of the following type are also normal: real symmetric, real skew-symmetric, Hermitian, skew-Hermitian, complex symmetric, complex skewsymmetric matrices.Find all real $2 \times 2$ matrices that are normal.Show that a triangular matrix that is normal is diagonal.

1-45
Banded $a_{i j} \neq 0$ only when $i-m_{l} \leq j \leq i+m_{u}$, 'Bandwidth' $=m_{l}+m_{u}+1$.

- Upper Hessenberg $a_{i j}=0$ when $i>j+1$. Lower Hessenberg matrices can be defined similarly.
- Outer product $\boldsymbol{A}=\boldsymbol{u} \boldsymbol{v}^{T}$, where both $\boldsymbol{u}$ and $\boldsymbol{v}$ are vectors.
- Block tridiagonal generalizes tridiagonal matrices by replacing each nonzero entry by a square matrix.


## Matrices with structure

- Diagonal $a_{i j}=0$ for $j \neq i$. Notation :

$$
A=\operatorname{diag}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)
$$

- Upper triangular $a_{i j}=0$ for $i>j$.
- Lower triangular $a_{i j}=\mathbf{0}$ for $i<j$.
- Upper bidiagonal $a_{i j}=0$ for $j \neq i$ and $j \neq i+1$.
- Lower bidiagonal $a_{i j}=0$ for $j \neq i$ and $j \neq i-1$.
- Tridiagonal $a_{i j}=0$ when $|i-j|>1$.


## Special matrices

Vandermonde : Given a column of entries $\left[x_{0}, x_{1}, \cdots, x_{n}\right]^{T}$ put its (componentwise) powers into the columns of a matrix $\boldsymbol{V}$ :

$$
V=\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{2} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right)
$$Try the matlab function vanderWhat does the matrix-vector product Va represent?

 Interpret the solution of the linear system $\boldsymbol{V a}=\boldsymbol{y}$ where $\boldsymbol{a}$ is the unknown. Sketch a 'fast' solution method based on this.

## Toeplitz

$>$ Entries are constant along diagonals, i.e., $a_{i j}=r_{j-i}$.
$>$ Determined by $m+n-1$ values $r_{j-i}$.

$$
\boldsymbol{T}=\underbrace{\left(\begin{array}{ccccc}
r_{0} & r_{1} & r_{2} & r_{3} & r_{4} \\
r_{-1} & r_{0} & r_{1} & r_{2} & r_{3} \\
r_{-2} & r_{-1} & r_{0} & r_{1} & r_{2} \\
r_{-3} & r_{-2} & r_{-1} & r_{0} & r_{1} \\
r_{-4} & r_{-3} & r_{-2} & r_{-1} & r_{0}
\end{array}\right)}_{\text {Toeplitz }}
$$

> Toeplitz systems $(m=n)$ can be solved in $O\left(n^{2}\right)$ ops.The whole inverse (!) can be determined in $O\left(n^{2}\right)$ ops.Explore toeplitz(c,r) in matlab.

Hankel: Entries are constant along anti-diagonals, i.e., $a_{i j}=$ $h_{j+i-1}$.
Determined by $m+n-1$ values $h_{j+i-1}$.

$$
H=\underbrace{\left(\begin{array}{lllll}
h_{1} & h_{2} & h_{3} & h_{4} & h_{5} \\
h_{2} & h_{3} & h_{4} & h_{5} & h_{6} \\
h_{3} & h_{4} & h_{5} & h_{6} & h_{7} \\
h_{4} & h_{5} & h_{6} & h_{7} & h_{8} \\
h_{5} & h_{6} & h_{7} & h_{8} & h_{9}
\end{array}\right)}_{\text {Hankol }}
$$Explore hankel(c,r) in matlab.

$\qquad$
Sparse matrices

Circulant : Entries in a row are cyclically right-shifted to form next row. Determined by $n$ values.

$$
C=\underbrace{\left(\begin{array}{lllll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4} & \boldsymbol{v}_{5} \\
\boldsymbol{v}_{5} & \boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4} \\
\boldsymbol{v}_{4} & \boldsymbol{v}_{5} & \boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \boldsymbol{v}_{3} \\
\boldsymbol{v}_{3} & \boldsymbol{v}_{4} & \boldsymbol{v}_{5} & \boldsymbol{v}_{1} & v_{2} \\
\boldsymbol{v}_{2} & \boldsymbol{v}_{3} & \boldsymbol{v}_{4} & \boldsymbol{v}_{5} & \boldsymbol{v}_{1}
\end{array}\right)}_{\text {Circulant }}
$$

How can you generate a circulant matrix in matlab?If $C$ is circulant (real) and symmetric, what can be said about the $v_{i}$ 's?

