SOLVING LINEAR SYSTEMS OF EQUATIONS

- · Background on linear systems
- Gaussian elimination and the Gauss-Jordan algorithms
- The LU factorization
- Gaussian Elimination with pivoting permutation matrices.
- Case of banded systems

> Standard mathematical solution by Cramer's rule:

$$x_i = \det(A_i)/\det(A)$$

 $A_i = \text{matrix obtained by replacing } i\text{-th column by } b.$

Note: This formula is useless in practice beyond n=3 or n=4.

Three situations:

- 1. The matrix A is nonsingular. There is a unique solution given by $x = A^{-1}b$.
- 2. The matrix A is singular and $b \in \text{Ran}(A)$. There are infinitely many solutions.
- 3. The matrix A is singular and $b \notin \text{Ran}(A)$. There are no solutions.

Background: Linear systems

The Problem: A is an $n \times n$ matrix, and b a vector of \mathbb{R}^n . Find x such that:

$$Ax = b$$

 \triangleright x is the unknown vector, b the right-hand side, and A is the coefficient matrix

Example:

$$\left\{ \begin{array}{l} 2x_1 \,+\, 4x_2 \,+\, 4x_3 \,=\, 6 \\ x_1 \,+\, 5x_2 \,+\, 6x_3 \,=\, 4 \end{array} \right. \text{ or } \left(\begin{array}{l} 2 \,\, 4 \,\, 4 \\ 1 \,\, 5 \,\, 6 \\ x_1 \,+\, 3x_2 \,+\, x_3 \,=\, 8 \end{array} \right. \left(\begin{array}{l} x_1 \\ 1 \,\, 5 \,\, 6 \\ 1 \,\, 3 \,\, 1 \end{array} \right) \left(\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(\begin{array}{l} 6 \\ 4 \\ 8 \end{array} \right)$$

Solution of above system ?

GvL 3.{1,3,5} – Systems

Example: (1) Let
$$A=\begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$$
 $b=\begin{pmatrix} 1 \\ 8 \end{pmatrix}$. A is nonsingular \blacktriangleright a unique solution $x=\begin{pmatrix} 0.5 \\ 2 \end{pmatrix}$.

Example: (2) Case where A is singular & $b \in \operatorname{Ran}(A)$:

$$A=egin{pmatrix} 2 & 0 \ 0 & 0 \end{pmatrix}, \quad b=egin{pmatrix} 1 \ 0 \end{pmatrix}.$$

lacksquare infinitely many solutions: $x(lpha) = egin{pmatrix} 0.5 \ lpha \end{pmatrix} \quad orall \ lpha.$

Example: (3) Let
$$A$$
 same as above, but $b = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

> No solutions since 2nd equation cannot be satisfied

3-4 GvL 3.{1,3,5} – Systems

Triangular linear systems

Example:

$$\begin{pmatrix} 2 & 4 & 4 \\ 0 & 5 & -2 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$

- ightharpoonup One equation can be trivially solved: the last one. $x_3 = 2$
- $\succ x_3$ is known we can now solve the 2nd equation:

$$5x_2 - 2x_3 = 1 \rightarrow 5x_2 - 2 \times 2 = 1 \rightarrow x_2 = 1$$

 \triangleright Finally x_1 can be determined similarly:

$$2x_1 + 4x_2 + 4x_3 = 2 \rightarrow \ ... \ \rightarrow \ x_1 = -5$$

GvL 3.{1,3,5} – Systems

Column version of back-substitution

Back-Substitution algorithm. Column version

For
$$j=n:-1:1$$
 do:
$$x_j=b_j/a_{jj}$$
 For $i=1:j-1$ do
$$b_i:=b_i-x_j*a_{ij}$$
 End

✓ Justify the above algorithm [Show that it does indeed compute the solution]

> Analogous algorithms for *lower* triangular systems.

ALGORITHM: 1 Back-Substitution algorithm

```
For i=n:-1:1 do: t:=b_i For j=i+1:n do t:=t-a_{ij}x_j Find t:=b_i-(a_{i,i+1:n},x_{i+1:n}) t:=b_i-a_i inner product t:=t/a_{ii} End
```

- ightharpoonup We must require that each $a_{ii} \neq 0$
- Operation count?

6 ______ GvL 3.{1,3,5} - Systems

Linear Systems of Equations: Gaussian Elimination

Back to arbitrary linear systems.

<u>Principle of the method:</u> Since triangular systems are easy to solve, we will transform a linear system into one that is triangular. Main operation: combine rows so that zeros appear in the required locations to make the system triangular.

Notation: use a Tableau:

3-7 ______ GvL 3.{1,3,5} – Systems

GvL 3.{1,3,5} – Systems

Main operation used: scaling and adding rows.

Example: Replace row2 by: row2 - $\frac{1}{2}$ *row1:

➤ This is equivalent to:

$$\begin{vmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 4 & 4 & 2 \\ 1 & 3 & 1 & 1 \\ 1 & 5 & 6 & -6 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6 \end{vmatrix}$$

- lacksquare The left-hand matrix is of the form $M=I-ve_1^T$ with $v=egin{pmatrix} 0\ rac{1}{2}\ 0 \end{pmatrix}$
 - 9 GvL 3.{1,3,5} Systems

> Equivalent to

$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -\frac{1}{2} & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & 4 & 4 & 2 \\ 1 & 3 & 1 & 1 \\ 1 & 5 & 6 & -6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix}$$

$$[A,b]
ightarrow [M_1A,M_1b]; \ \ M_1 = I - v^{(1)} e_1^T; \ \ v^{(1)} = egin{pmatrix} 0 \ rac{1}{2} \ rac{1}{2} \end{pmatrix}$$

New system $A_1x = b_1$. Step 2 must now transform:

Linear Systems of Equations: Gaussian Elimination

Go back to original system. Step 1 must transform:

$$row_2 := row_2 - \frac{1}{2} \times row_1$$
: $row_3 := row_3 - \frac{1}{2} \times row_1$:

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{bmatrix}$$

GvL 3.{1,3,5} – Systems

$$row_3 := row_3 - 3 imes row_2 :
ightarrow egin{bmatrix} 2 & 4 & 4 & 2 \ 0 & 1 & -1 & 0 \ 0 & 0 & 7 & -7 \ \end{pmatrix}$$

➤ Equivalent to

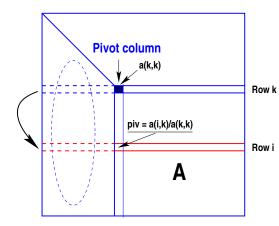
$$\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{vmatrix} \times \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 3 & 4 & -7 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 7 & -7 \end{vmatrix}$$

> Second transformation is as follows:

$$[A_1,b_1]
ightarrow [M_2A_1,M_2b_1]; \; M_2 = I - v^{(2)}e_2^T; \; v^{(2)} = egin{pmatrix} 0 \ 0 \ 3 \end{pmatrix}$$

➤ Triangular system ➤ Solve.

Gaussian Elimination in a picture



For i=k+1:n Do: | piv = a(i,k)/a(k,k) | row(i):=row(i) - piv*row(k)

13 GvL 3.{1,3,5} – Systems

The LU factorization

Now ignore the right-hand side from the transformations.

Observation: Gaussian elimination is equivalent to n-1 successive Gaussian transformations, i.e., multiplications with matrices of the form $M_k = I - v^{(k)} e_k^T$, where the first k components of $v^{(k)}$ equal zero.

ightharpoonup Set $A_0 \equiv A$

$$A o M_1 A_0 = A_1 o M_2 A_1 = A_2 o M_3 A_2 = A_3 \cdots o M_{n-1} A_{n-2} = A_{n-1} \equiv U$$

► Last $A_k \equiv U$ is an upper triangular matrix.

ALGORITHM: 2 Gaussian Elimination

1. For
$$k = 1 : n - 1$$
 Do:

2. For
$$i = k + 1 : n$$
 Do:

3.
$$piv := a_{ik}/a_{kk}$$

4. For
$$j := k + 1 : n + 1$$
 Do :

$$5. a_{ij} := a_{ij} - piv * a_{kj}$$

Operation count:

$$T = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (2(n-k) + 3) = ...$$

Complete the above calculation. Order of the cost?

GvL 3.{1,3,5} - Systems

ightharpoonup At each step we have: $A_k = M_{k+1}^{-1} A_{k+1}$. Therefore:

$$A_0 = M_1^{-1} A_1$$

$$= M_1^{-1} M_2^{-1} A_2$$

$$= M_1^{-1} M_2^{-1} M_3^{-1} A_3$$

$$= \dots$$

$$= M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1} A_{n-1}$$

$$L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$$

ightharpoonup Note: L is Lower triangular, A_{n-1} is upper triangular

ightharpoonup LU decomposition : A = LU

3-15 GvL 3.{1,3,5} – Systems

3-16

_ GvL 3.{1,3,5} - Systems

How to get L?

$$L = M_1^{-1} M_2^{-1} M_3^{-1} \cdots M_{n-1}^{-1}$$

- Consider only the first 2 matrices in this product.
- Note $M_k^{-1} = (I v^{(k)} e_k^T)^{-1} = (I + v^{(k)} e_k^T)$. So:

$$M_1^{-1}M_2^{-1} = (I + v^{(1)}e_1^T)(I + v^{(2)}e_2^T) = I + v^{(1)}e_1^T + v^{(2)}e_2^T.$$

Generally,

$$M_1^{-1}M_2^{-1}\cdots M_k^{-1} = I + v^{(1)}e_1^T + v^{(2)}e_2^T + \cdots v^{(k)}e_k^T$$

The L factor is a lower triangular matrix with ones on the diagonal. Column k of L, contains the multipliers l_{ik} used in the k-th step of Gaussian elimination.

GvL 3.{1,3,5} – Systems GvL 3.{1,3,5} – Systems

Practical use: Show how to use the LU factorization to solve linear systems with the same matrix A and different b's.

 $ightharpoonup_5$ LU factorization of the matrix $A=egin{pmatrix}2&4&4\\1&5&6\\1&3&1\end{pmatrix}$?

 \triangle 6 Determinant of A?

True or false: "Computing the LU factorization of matrix A involves more arithmetic operations than solving a linear system Ax = b by Gaussian elimination".

A matrix A has an LU decomposition if

$$\det(A(1:k,1:k)) \neq 0$$
 for $k = 1, \dots, n-1$.

In this case, the determinant of A satisfies:

$$\det A = \det(U) = \prod_{i=1}^n u_{ii}$$

If, in addition, A is nonsingular, then the LU factorization is unique.

Principle of the method: We will now transform the system into one that is even easier to solve than triangular systems, namely a diagonal system. The method is very similar to Gaussian Elimination. It is just a bit more expensive.

Back to original system. Step 1 must transform:

Gauss-Jordan Elimination

 $row_2 := row_2 - 0.5 \times row_1$: $row_3 := row_3 - 0.5 \times row_1$:

$$\begin{bmatrix} 2 & 4 & 4 & 2 \\ 0 & 1 & -1 & 0 \\ 1 & 5 & 6 & -6 \end{bmatrix}$$

 $row_1 := row_1 - 4 \times row_2$: $row_3 := row_3 - 3 \times row_2$:

GvL 3.{1,3,5} - Systems

There is now a third step:

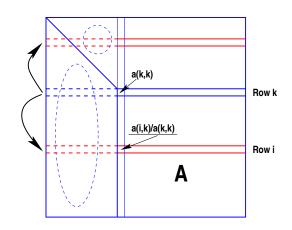
$$row_1 := row_1 - \frac{8}{7} \times row_3$$
: $row_2 := row_2 - \frac{-1}{7} \times row_3$:

$$\begin{bmatrix} 2 & 0 & 0 & 10 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 7 & -7 \end{bmatrix}$$

Solution: $x_3 = -1$; $x_2 = -1$; $x_1 = 5$

GvL 3.{1,3,5} - Systems

Gauss-Jordan Elimination in a picture



ALGORITHM: 3 Gauss-Jordan elimination

- 1. For k = 1 : n Do:
- For i = 1:n and if i! = k Do:
- $piv := a_{ik}/a_{kk}$
- For j:=k+1:n+1 Do :
- $a_{ij} := a_{ij} piv * a_{kj}$
- End
- End
- 7. End
- Operation count:

$$T = \sum_{k=1}^{n} \sum_{i=1}^{n-1} [1 + \sum_{j=k+1}^{n+1} 2] = \sum_{k=1}^{n} \sum_{i=1}^{n-1} (2(n-k) + 3) = \cdots$$

Complete the above calculation. Order of the cost? How does it compare with Gaussian Elimination? GvL 3.{1,3,5} – Systems

```
function x = gaussj(A, b)
 function x = gaussj(A, b)
 solves A x = b by Gauss-Jordan elimination
n = size(A, 1);
A = [A,b];
for k=1:n
 for i=1:n
   if (i = k)
       piv = A(i,k) / A(k,k);
       A(i,k+1:n+1) = A(i,k+1:n+1) - piv*A(k,k+1:n+1);
 end
end
x = A(:, n+1) ./ diag(A) ;
```

Gaussian Elimination: Partial Pivoting

Consider again GE for the system:

$$\begin{cases} 2x_1 + 2x_2 + 4x_3 = & 2 \\ x_1 + & x_2 + & x_3 = & 1 \text{ Or:} \end{cases} \begin{array}{c|ccccc} 2 & 2 & 4 & 2 \\ 1 & 1 & 1 & 1 \\ 1 & 4 & 6 & -5 \end{cases}$$

 $row_2 := row_2 - \frac{1}{2} \times row_1$: $ightharpoonup row_3 := row_3 - \frac{1}{2} \times row_1$:

$$\begin{bmatrix} 2 & 2 & 4 & 2 \\ 0 & 0 & -1 & 0 \\ 1 & 4 & 6 & -5 \end{bmatrix}$$

 \triangleright Pivot a_{22} is zero. Solution : permute rows 2 and 3:

GvL 3.{1,3,5} - Systems

GvL 3.{1,3,5} – Systems

GvL 3.{1,3,5} - Systems

Gaussian Elimination with Partial Pivoting

Partial Pivoting

Row k Largest a ik

General situation:

Always permute row k with row l such that

$$|a_{lk}| = \max_{i=k,\dots,n} |a_{ik}|$$

More 'stable' algorithm.

The matlab script *gaussp* will be provided. Explore it from the angle of an actual implementation in a language like C. Is it necessary to 'physically' move the rows? (moving data around is not free).

GvL 3.{1,3,5} – Systems

Pivoting and permutation matrices

- ➤ A permutation matrix is a matrix obtained from the identity matrix by <u>permuting</u> its rows
- For example for the permutation $\pi = \{3, 1, 4, 2\}$ we obtain

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

ightharpoonup Important observation: the matrix PA is obtained from A by permuting its rows with the permutation π

$$(PA)_{i,:}=A_{\pi(i),:}$$

GvL 3.{1,3,5} - Systems

Example: To obtain $\pi = \{3, 1, 4, 2\}$ from $\pi = \{1, 2, 3, 4\}$ – we need to swap $\pi(2) \leftrightarrow \pi(3)$ then $\pi(3) \leftrightarrow \pi(4)$ and finally $\pi(1) \leftrightarrow \pi(2)$. Hence:

$$P = egin{pmatrix} 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \end{pmatrix} = E_{1,2} imes E_{3,4} imes E_{2,3}$$

✓ 11 In the previous example where

$$>> A = [1234;5678;90-12;-34-56]$$

Matlab gives det(A) = -896. What is det(PA)?

$$P = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 0 & -1 & 2 \\ -3 & 4 & -5 & 6 \end{pmatrix} ?$$

- \triangleright Any permutation matrix is the product of interchange permutations, which only swap two rows of I.
- Notation: E_{ij} = Identity with rows i and j swapped

GvL 3.{1,3,5} – Systems

At each step of G.E. with partial pivoting:

$$M_{k+1}E_{k+1}A_k = A_{k+1}$$

where E_{k+1} encodes a swap of row k+1 with row l>k+1.

Notes: (1) $E_i^{-1}=E_i$ and (2) $M_j^{-1}\times E_{k+1}=E_{k+1}\times \tilde{M_j}^{-1}$ for $k\geq j$, where $\tilde{M_j}$ has a permuted Gauss vector:

$$egin{aligned} (I + v^{(j)} e_j^T) E_{k+1} &= E_{k+1} (I + E_{k+1} v^{(j)} e_j^T) \ &\equiv E_{k+1} (I + ilde{v}^{(j)} e_j^T) \ &\equiv E_{k+1} ilde{M}_j \end{aligned}$$

ightharpoonup Here we have used the fact that above row k+1, the permutation matrix E_{k+1} looks just like an identity matrix.

Result:

$$\begin{split} A_0 &= E_1 M_1^{-1} A_1 \\ &= E_1 M_1^{-1} E_2 M_2^{-1} A_2 = E_1 E_2 \tilde{M}_1^{-1} M_2^{-1} A_2 \\ &= E_1 E_2 \tilde{M}_1^{-1} M_2^{-1} E_3 M_3^{-1} A_3 \\ &= E_1 E_2 E_3 \tilde{M}_1^{-1} \tilde{M}_2^{-1} M_3^{-1} A_3 \\ &= \dots \\ &= E_1 \cdots E_{n-1} \times \tilde{M}_1^{-1} \tilde{M}_2^{-1} \tilde{M}_3^{-1} \cdots \tilde{M}_{n-1}^{-1} \times A_{n-1} \end{split}$$

> In the end

$$PA = LU$$
 with $P = E_{n-1} \cdots E_1$

-33 _____ GvL 3.{1,3,5} – Systems

First observation: Gaussian elimination (no pivoting) preserves the initial banded form. Consider first step of Gaussian elimination:

```
2. For i=2:n Do:

3. a_{i1}:=a_{i1}/a_{11} (pivots)

4. For j:=2:n Do:

5. a_{ij}:=a_{ij}-a_{i1}*a_{1j}

6. End

7. End
```

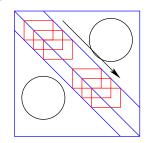
If A has upper bandwidth q and lower bandwidth p then so is the resulting [L/U] matrix. \blacktriangleright Band form is preserved (induction)

△
13 Operation count?

Special case of banded matrices

- Banded matrices arise in many applications
- ightharpoonup A has upper bandwidth q if $a_{ij}=0$ for j-i>q
- ightharpoonup A has lower bandwidth p if $a_{ij}=0$ for i-j>p

Explain how GE would work on a banded system (you want to avoid operations involving zeros) – Hint: see picture



➤ Simplest case: tridiagonal ➤ p = q = 1.

GvL 3.{1,3,5} – Systems

What happens when partial pivoting is used?

If A has lower bandwidth p, upper bandwidth q, and if Gaussian elimination with partial pivoting is used, then the resulting U has upper bandwidth p+q. L has at most p+1 nonzero elements per column (bandedness is lost).

➤ Simplest case: tridiagonal ➤ p = q = 1.

Example:

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \end{pmatrix}$$

3-35 ______ GvL 3.{1,3,5} - Systems

3-36

GvL 3.{1,3,5} – Systems