FLOATING POINT ARITHMETHIC - ERROR ANALYSIS

- Brief review of floating point arithmetic
- Model of floating point arithmetic
- Notation, backward and forward errors

Roundoff errors and floating-point arithmetic

$>$ The basic problem: The set \boldsymbol{A} of all possible representable numbers on a given machine is finite - but we would like to use this set to perform standard arithmetic operations ($+,{ }^{*},-$, ,) on an infinite set. The usual algebra rules are no longer satisfied since results of operations are rounded.
> Basic algebra breaks down in floating point arithmetic.
Example: In floating point arithmetic.

$$
a+(b+c)!=(a+b)+c
$$Matlab experiment: For 10,000 random numbers find number of instances when the above is true. Same thing for the multiplication..

Machine precision - machine epsilon
$>$ Notation: $\quad f l(x)=$ closest floating point representation of real number x ('rounding')
$>$ When a number x is very small, there is a point when $1+x==1$ in a machine sense. The computer no longer makes a difference between 1 and $1+x$.

Machine epsilon:

The smallest number ϵ such that $1+\epsilon$ is a float that is different from one, is called machine epsilon. Denoted by macheps or eps, it represents the distance from 1 to the next larger floating point number.
$>$ With previous representation, eps is equal to $\boldsymbol{\beta}^{-(t-1)}$.
$>$ Mantissa m is an integer with $0 \leq m \leq \beta^{t}-1$.
$>. d_{1} d_{2} \cdots d_{t}$ is a fraction in the base- $\boldsymbol{\beta}$ representation (Generally the form is normalized in that $d_{1} \neq 0$), and e is an integer
$>$ Often, more convenient to rewrite the above as:

$$
x= \pm\left(m / \beta^{t}\right) \times \beta^{e} \equiv \pm m \times \beta^{e-t}
$$

Example: In IEEE standard double precision, $\beta=2$, and $t=53$ (includes 'hidden bit'). Therefore eps $=2^{-52}$.

Unit Round-off A real number x can be approximated by a floating number $f l(x)$ with relative error no larger than $\underline{\mathbf{u}}=\frac{1}{2} \beta^{-(t-1)}$.
$>\underline{\mathrm{u}}$ is called Unit Round-off.
> In fact can easily show:

$$
f l(x)=x(1+\delta) \text { with }|\delta|<\underline{\mathbf{u}}
$$Matlab experiment: find the machine epsilon on your computer.

> What conditions/ rules should be satisfied by floating point arithmetic? The IEEE standard is a set of standards adopted by many CPU manufacturers.

4-5
GvL 2.7 - Float
4-6

$$
f l(x)=x(1+\epsilon), \quad \text { where } \quad|\epsilon| \leq \underline{u}
$$

Rule 2.

$$
f l(x \odot y)=(x \odot y)\left(1+\epsilon_{\odot}\right), \text { where }\left|\epsilon_{\odot}\right| \leq \underline{\mathbf{u}}
$$

for $\odot=$
$+,-, *, /$

$$
f l(a \odot b)=f l(b \odot a)
$$

Among IEEE rules:

Rule 1.

For,+ * operations

Matlab experiment: Verify experimentally Rule 3 with 10,000 randomly generated numbers a_{i}, b_{i}.

Example: Consider the sum of 3 numbers: $\boldsymbol{y}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c}$.
$>$ Done as $f l(a+b+c)=f l(f l(a+b)+c)$

$$
\begin{aligned}
f l(a+b) & =(a+b)\left(1+\epsilon_{1}\right) \\
f l(a+b+c) & =\left[(a+b)\left(1+\epsilon_{1}\right)+c\right]\left(1+\epsilon_{2}\right) \\
& =a\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)+b\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right) \\
& +c\left(1+\epsilon_{2}\right) \\
& =a\left(1+\theta_{1}\right)+b\left(1+\theta_{2}\right)+c\left(1+\theta_{3}\right)
\end{aligned}
$$

with $1+\theta_{1}=1+\theta_{2}=\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)$ and $1+\theta_{3}=\left(1+\epsilon_{2}\right)$
$>$ For a longer sum we would have something like:

$$
1+\theta_{j}=\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)(\cdots)\left(1+\epsilon_{n-j}\right)
$$

We will study such products shortly
$>$ Remark on order of the sum. If $y_{1}=f l(f l(a+b)+c)$:

$$
\begin{aligned}
y 1 & \left.=\left[(a+b+c)+(a+b) \epsilon_{1}\right)\right]\left(1+\epsilon_{2}\right) \\
& =(a+b+c)\left[1+\frac{a+b}{a+b+c} \epsilon_{1}\left(1+\epsilon_{2}\right)+\epsilon_{2}\right]
\end{aligned}
$$

So disregarding the high order term $\epsilon_{1} \epsilon_{2}$

$$
\begin{aligned}
f l(f l(a+b)+c) & =(a+b+c)\left(1+\epsilon_{3}\right) \\
\epsilon_{3} & \approx \frac{a+b}{a+b+c} \epsilon_{1}+\epsilon_{2}
\end{aligned}
$$

$>$ If we redid the computation as $y_{2}=f l(a+f l(b+c))$ we would find

$$
\begin{aligned}
f l(a+f l(b+c)) & =(a+b+c)\left(1+\epsilon_{4}\right) \\
\epsilon_{4} & \approx \frac{b+c}{a+b+c} \epsilon_{1}+\epsilon_{2}
\end{aligned}
$$

$>$ The error is amplified by the factor $(\boldsymbol{a}+\boldsymbol{b}) / \boldsymbol{y}$ in the first case and $(\boldsymbol{b}+\boldsymbol{c}) / \boldsymbol{y}$ in the second case.
$>$ In order to sum n numbers accurately, it is better to start with small numbers first. [However, sorting before adding is not worth it.]
> But watch out if the numbers have mixed signs!

Backward and forward errors

$>$ Assume the approximation \hat{y} to $y=\operatorname{alg}(x)$ is computed by some algorithm with arithmetic precision ϵ. Possible analysis: find an upper bound for the Forward error

$$
|\Delta y|=|y-\hat{y}|
$$

$>$ This is not always easy.
Alternative question: find equivalent perturbation on initial data (x) that produces the result $\hat{\boldsymbol{y}}$. In other words, find Δx so that:

$$
\operatorname{alg}(x+\Delta x)=\hat{y}
$$

> The value of $|\Delta x|$ is called the backward error. An analysis to find an upper bound for $|\Delta x|$ is called Backward error analysis.

The absolute value notation

$>$ For a given vector $x,|x|$ is the vector with components $\left|x_{i}\right|$, i.e., $|x|$ is the component-wise absolute value of \boldsymbol{x}.

$$
\text { Similarly for matrices: } \quad|A|=\left\{\left|a_{i j}\right|\right\}_{i=1, \ldots, m ; j=1, \ldots, n}
$$

> An obvious result: The basic inequality

$$
\left|f l\left(a_{i j}\right)-a_{i j}\right| \leq \underline{\mathrm{u}}\left|a_{i j}\right|
$$

translates into

$$
|f l(A)-A| \leq \underline{\mathrm{u}}|A|
$$

$>A \leq B$ means $a_{i j} \leq b_{i j}$ for all $1 \leq i \leq m ; 1 \leq j \leq n$
4-10 \qquad
Example: $\quad A=\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \quad B=\left(\begin{array}{ll}d & e \\ 0 & f\end{array}\right)$

Consider the product: $f l(\boldsymbol{A} \cdot \boldsymbol{B})=$

$$
\left[\begin{array}{c|c}
a d\left(1+\epsilon_{1}\right) & {\left[a e\left(1+\epsilon_{2}\right)+b f\left(1+\epsilon_{3}\right)\right]\left(1+\epsilon_{4}\right)} \\
\hline 0 & c f\left(1+\epsilon_{5}\right)
\end{array}\right]
$$

with $\epsilon_{i} \leq \underline{\mathbf{u}}$, for $i=1, \ldots, 5$. Result can be written as:

$$
\left[\begin{array}{c|c}
a & b\left(1+\epsilon_{3}\right)\left(1+\epsilon_{4}\right) \\
\hline 0 & c\left(1+\epsilon_{5}\right)
\end{array}\right]\left[\begin{array}{c|c}
d\left(1+\epsilon_{1}\right) & e\left(1+\epsilon_{2}\right)\left(1+\epsilon_{4}\right) \\
\hline 0 & f
\end{array}\right]
$$

$>$ So $f l(A \cdot B)=\left(A+E_{A}\right)\left(B+E_{B}\right)$.
$>$ Backward errors $\boldsymbol{E}_{A}, \boldsymbol{E}_{B}$ satisfy:

$$
\left|E_{A}\right| \leq 2 \underline{\mathrm{u}}|A|+O\left(\underline{\mathrm{u}}^{2}\right) ; \quad\left|E_{B}\right| \leq 2 \underline{\mathrm{u}}|B|+O\left(\underline{\mathrm{u}}^{2}\right)
$$

$$
\begin{aligned}
& \text { When solving } A x=b \text { by Gaussian Elimination, we will see that a bound on } \\
& \left\|e_{x}\right\| \text { such that this holds exactly: } \\
& \qquad A\left(x_{\text {computed }}+e_{x}\right)=b \\
& \text { is much harder to find than bounds on }\left\|E_{A}\right\|,\left\|e_{b}\right\| \text { such that this holds exactly: } \\
& \qquad\left(A+E_{A}\right) x_{\text {computed }}=\left(b+e_{b}\right) . \\
& \text { Note: In many instances backward errors are more meaningful than forward errors: } \\
& \text { if initial data is accurate only to } 4 \text { digits say, then my algorithm for computing } x \text { need } \\
& \text { not guarantee a backward error of less then } 10^{-10} \text { for example. A backward error } \\
& \text { of order } 10^{-4} \text { is acceptable. }
\end{aligned}
$$

Error Analysis: Inner product

$>$ Inner products are in the innermost parts of many calculations. Their analysis is important.

$$
\begin{aligned}
& \text { Lemma: If }\left|\delta_{i}\right| \leq \underline{\mathbf{u}} \text { and } n \underline{\mathbf{u}}<1 \text { then } \\
& \qquad \Pi_{i=1}^{n}\left(1+\delta_{i}\right)=1+\theta_{n} \quad \text { where } \quad\left|\theta_{n}\right| \leq \frac{n \underline{\mathbf{u}}}{1-n \underline{\mathbf{u}}}
\end{aligned}
$$

$>$ Common notation $\gamma_{n} \equiv \frac{n \underline{u}}{1-n \underline{u}}$Prove the lemma [Hint: use induction]

Backward error result (output is exact sum of perturbed input)
$>$ Alternatively, can write 'forward' bound: $|f l(a+b+c)-(a+b+c)| \leq\left|a \theta_{1}\right|+\left|b \theta_{2}\right|+\left|c \theta_{3}\right|$.
(bound on | output - exact sum |)

Example: Previous sum of numbers can be written

$$
\begin{aligned}
f l(a+b+c) & =f l(f l(a+b)+c) \\
& =\left[(a+b)\left(1+\epsilon_{1}\right)+c\right]\left(1+\epsilon_{2}\right) \\
& =a\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)+b\left(1+\epsilon_{1}\right)\left(1+\epsilon_{2}\right)+ \\
& c\left(1+\epsilon_{2}\right) \\
& =a\left(1+\theta_{1}\right)+b\left(1+\theta_{2}\right)+c\left(1+\theta_{3}\right) \\
& =\text { exact sum of slightly perturbed inputs, }
\end{aligned}
$$

where all $\boldsymbol{\theta}_{i}$'s satisfy $\left|\theta_{i}\right| \leq 1.01 n \underline{u}$ (here $\boldsymbol{n}=2$) - Alternative $\left|\theta_{i}\right| \leq \gamma_{n}$

Analysis of inner products (cont.)

$$
\text { Consider } \quad s_{n}=f l\left(x_{1} * y_{1}+x_{2} * y_{2}+\cdots+x_{n} * y_{n}\right)
$$

$>$ In what follows η_{i} 's come from *, ϵ_{i} 's come from +
$>$ They satisfy: $\left|\eta_{i}\right| \leq \underline{\mathrm{u}}$ and $\left|\epsilon_{i}\right| \leq \underline{\mathrm{u}}$.
> The inner product s_{n} is computed as:

1. $s_{1}=f l\left(x_{1} y_{1}\right)=\left(x_{1} y_{1}\right)\left(1+\eta_{1}\right)$
2. $s_{2}=f l\left(s_{1}+f l\left(x_{2} y_{2}\right)\right)=f l\left(s_{1}+x_{2} y_{2}\left(1+\eta_{2}\right)\right)$

$$
=\left(x_{1} y_{1}\left(1+\eta_{1}\right)+x_{2} y_{2}\left(1+\eta_{2}\right)\right)\left(1+\epsilon_{2}\right)
$$

$$
=x_{1} y_{1}\left(1+\eta_{1}\right)\left(1+\epsilon_{2}\right)+x_{2} y_{2}\left(1+\eta_{2}\right)\left(1+\epsilon_{2}\right)
$$

3. $s_{3}=f l\left(s_{2}+f l\left(x_{3} y_{3}\right)\right)=f l\left(s_{2}+x_{3} y_{3}\left(1+\eta_{3}\right)\right)$

$$
=\left(s_{2}+x_{3} y_{3}\left(1+\eta_{3}\right)\right)\left(1+\epsilon_{3}\right)
$$

For each of these products
$\left(1+\eta_{i}\right) \prod_{j=i}^{n}\left(1+\epsilon_{j}\right)=1+\theta_{i}, \quad$ with $\quad\left|\theta_{i}\right| \leq \gamma_{n} \quad$ so:
$s_{n}=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}\left(1+\boldsymbol{\theta}_{i}\right)$ with $\quad\left|\boldsymbol{\theta}_{i}\right| \leq \gamma_{n} \quad$ or:

$$
\boldsymbol{f l}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}\right)=\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i}+\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{y}_{i} \boldsymbol{\theta}_{i} \quad \text { with } \quad\left|\boldsymbol{\theta}_{i}\right| \leq \gamma_{n}
$$

$>$ This leads to the final result (forward form)

$$
\left|f l\left(\sum_{i=1}^{n} x_{i} y_{i}\right)-\sum_{i=1}^{n} x_{i} y_{i}\right| \leq \gamma_{n} \sum_{i=1}^{n}\left|x_{i}\right|\left|y_{i}\right|
$$

$>$ or (backward form)

$$
f l\left(\sum_{i=1}^{n} x_{i} y_{i}\right)=\sum_{i=1}^{n} x_{i} y_{i}\left(1+\theta_{i}\right) \quad \text { with } \quad\left|\theta_{i}\right| \leq \gamma_{n}
$$

Expand: $s_{3}=x_{1} y_{1}\left(1+\eta_{1}\right)\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right)$

$$
\begin{aligned}
& +x_{2} y_{2}\left(1+\eta_{2}\right)\left(1+\epsilon_{2}\right)\left(1+\epsilon_{3}\right) \\
& +x_{3} y_{3}\left(1+\eta_{3}\right)\left(1+\epsilon_{3}\right)
\end{aligned}
$$

$>$ Induction would show that [with convention that $\epsilon_{1} \equiv 0$]

$$
s_{n}=\sum_{i=1}^{n} x_{i} y_{i}\left(1+\eta_{i}\right) \prod_{j=i}^{n}\left(1+\epsilon_{j}\right)
$$How many terms in the coefficient of $x_{i} \boldsymbol{y}_{i}$ do we have?

- When $i>1: 1+(n-i+1)=n-i+2$

A: When $i=1: n$ (since $\epsilon_{1}=0$ does not count)
$>$ Bottom line: always $\leq \boldsymbol{n}$.

Main result on inner products:

> Backward error expression:

$$
f l\left(x^{T} y\right)=\left[x . *\left(1+d_{x}\right)\right]^{T}\left[y . *\left(1+d_{y}\right)\right]
$$

where $\left\|d_{\square}\right\|_{\infty} \leq \gamma_{n}, \square=x, y$.
$>$ Equality valid even if one of the d_{x}, d_{y} absent.
> Forward error expression:

$$
\left|f l\left(x^{T} y\right)-x^{T} y\right| \leq \gamma_{n}|x|^{T}|y|
$$

$>$ Alternative for results above: replace γ_{n} by $1.01 \underline{u}$.
$>$ Above assumes $n \underline{\mathbf{u}} \leq .01$. When $\underline{\mathbf{u}} \approx 10^{-16}$, this holds for $n \leq 10^{14}$.
\qquad
$>$ Consequence for matrix products: $\left(\boldsymbol{A} \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}\right)$

$$
|f l(A B)-A B| \leq \gamma_{n}|A||B|
$$

$>$ Another way to write the result (less precise) is

$$
\left|f l\left(x^{T} y\right)-x^{T} y\right| \leq n \underline{\mathrm{u}}|x|^{T}|y|+O\left(\underline{\mathrm{u}}^{2}\right)
$$

Show for any x, y, there exist $\Delta x, \Delta y$ such that

$$
\begin{array}{lll}
f l\left(x^{T} y\right)=(x+\Delta x)^{T} y, & \text { with } & |\Delta x| \leq \gamma_{n}|x| \\
f l\left(x^{T} y\right)=x^{T}(y+\Delta y), & \text { with } & |\Delta y| \leq \gamma_{n}|y|
\end{array}
$$(Continuation) Let \boldsymbol{A} an $\boldsymbol{m} \times \boldsymbol{n}$ matrix, \boldsymbol{x} an \boldsymbol{n}-vector, and $\boldsymbol{y}=\boldsymbol{A x}$. Show that there exist a matrix ΔA such

$$
f l(y)=(A+\Delta A) x, \quad \text { with } \quad|\Delta A| \leq \gamma_{n}|A|
$$(Continuation) From the above derive a result about a column of the product of two matrices \boldsymbol{A} and \boldsymbol{B}. Does a similar result hold for the product $\boldsymbol{A B}$ as a whole?

\propto_{5} Assume you use single precision for which you have $\underline{\mathrm{u}}=2 . \times 10^{-6}$. What is the largest \boldsymbol{n} for which $\boldsymbol{n} \underline{\mathbf{u}} \leq 0.01$ holds? Any conclusions for the use of single precision arithmetic?
\square_{0} What does the main result on inner products imply for the case when $\boldsymbol{y}=\boldsymbol{x}$? [Contrast the relative accuracy you get in this case vs. the general case when $y \neq x$]

Error Analysis for linear systems: Triangular case
> Recall
ALGORITHM : 1. Back-Substitution algorithm

```
For \(i=n:-1: 1\) do:
    \(t:=b_{i}\)
    For \(j=i+1: n d o\)
        \(\left.\begin{array}{l}t:=t-a_{i j} x_{j}\end{array}\right\} \begin{array}{r}t:=t-\left(a_{i, i+1: n}, x_{i+1: n}\right) \\ =t-\text { an inner product }\end{array}\)
    End
    \(x_{i}=t / a_{i i}\)
```

End
$>$ We must require that each $a_{i i} \neq 0$
Round-off error (use previous results for $(\cdot, \cdot))$?

The computed solution $\hat{\boldsymbol{x}}$ of the triangular system $\boldsymbol{U} \boldsymbol{x}=\boldsymbol{b}$ computed by the backsubstitution algorithm satisfies:

$$
(U+E) \hat{x}=b
$$

with

$$
|E| \leq n \underline{\mathbf{u}}|U|+O\left(\underline{\mathbf{u}}^{2}\right)
$$

> Backward error analysis. Computed x solves a slightly perturbed system.
$>$ Backward error not large in general. It is said that triangular solve is "backward stable".

25
"Backward" error estimate.
$>|\hat{\boldsymbol{L}}|$ and $|\hat{\boldsymbol{U}}|$ are not known in advance - they can be large.
> What if partial pivoting is used?
$>$ Permutations introduce no errors. Equivalent to standard LU factorization on matrix $\boldsymbol{P} \boldsymbol{A}$.
$>|\hat{L}|$ is small since $l_{i j} \leq 1$. Therefore, only \boldsymbol{U} is "uncertain"
> In practice partial pivoting is "stable" - i.e., it is highly unlikely to have a very large U.

Error Analysis for Gaussian Elimination

If no zero pivots are encountered during Gaussian elimination (no pivoting) then the computed factors \hat{L} and \hat{U} satisfy

$$
\hat{\boldsymbol{L}} \hat{\boldsymbol{U}}=\boldsymbol{A}+\boldsymbol{H}
$$

with

$$
|H| \leq 3(n-1) \times \underline{\mathrm{u}}(|A|+|\hat{L}||\hat{U}|)+O\left(\underline{\mathrm{u}}^{2}\right)
$$

Solution $\hat{\boldsymbol{x}}$ computed via $\hat{\boldsymbol{L}} \hat{\boldsymbol{y}}=\boldsymbol{b}$ and $\hat{\boldsymbol{U}} \hat{\boldsymbol{x}}=\hat{\boldsymbol{y}}$ is s. t.

$$
(A+E) \hat{x}=b \quad \text { with }|E| \leq n \underline{\mathbf{u}}(3|A|+5|\hat{L}||\hat{U}|)+O\left(\underline{\mathrm{u}}^{2}\right)
$$

$4-26$
Supplemental notes: Floating Point Arithmetic
In most computing systems, real numbers are represented in two parts: A mantissa and an exponent. If the representation is in the base $\boldsymbol{\beta}$ then:

$$
x= \pm\left(. d_{1} d_{2} \cdots d_{m}\right)_{\beta} \beta^{e}
$$

$>. d_{1} d_{2} \cdots d_{m}$ is a fraction in the base- $\boldsymbol{\beta}$ representation
$>e$ is an integer - can be negative, positive or zero.
$>$ Generally the form is normalized in that $d_{1} \neq 0$.

Example: In base 10 (for illustration)

1. 1000.12345 can be written as

$0.100012345_{10} \times 10^{4}$

2. 0.000812345 can be written as

$$
0.812345_{10} \times 10^{-3}
$$

$>$ Problem with floating point arithmetic: we have to live with limited precision.
Example: Assume that we have only 5 digits of accuray in the mantissa and 2 digits for the exponent (excluding sign).

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline . d_{1} & d_{2} & d_{3} & d_{4} & d_{5} & e_{1} & e_{2} \\
\hline
\end{array}
$$

4-29
Third task:
round result. Result has 6 digits - can use only 5 so we can

$>$ Chop result: | 1 | 0 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |

$>$ Round result: | .1 | 0 | 0 | 1 | 3 |
| :--- | :--- | :--- | :--- | :--- |

Fourth task:

Normalize result if needed (not needed here)

result with rounding: | .1 | 0 | 0 | 1 | 3 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Σ_{10} Redo the same thing with $7000.2+4000.3$ or $6999.2+4000.3$.

Try to add $1000.2=.10002 \mathrm{e}+03$ and $1.07=.10700 \mathrm{e}+01$:

$$
1000.2=\begin{array}{|l|l|l|l|l|l|l|}
\hline .1 & 0 & 0 & 0 & 2 & 0 & 4
\end{array} ; \quad 1.07=\begin{array}{|l|l|l|l|l|l|l|}
\hline .1 & 0 & 7 & 0 & 0 & 0 & 1 \\
\hline
\end{array}
$$

First task: align decimal points. The one with smallest exponent will be (internally) rewritten so its exponent matches the largest one:

$$
1.07=0.000107 \times 10^{4}
$$

Second task: add mantissas:

0. 10002
+0.000107
= 0. 1000127

4-30

The IEEE standard

32 bit (Single precision) :

$>$ Number is scaled so it is in the form $1 . d_{1} d_{2} \ldots d_{23} \times 2^{e}$ - but leading one is not represented.
$>e$ is between -126 and 127 .
> [Here is why: Internally, exponent e is represented in "biased" form: what is stored is actually $c=e+127$ - so the value c of exponent field is between 1 and 254. The values $c=0$ and $c=255$ are for special cases (0 and ∞)]

64 bit (Double precision) :

\pm	11 bits
©	
©	
exponent	

$>$ Bias of 1023 so if e is the actual exponent the content of the exponent field is $c=e+1023$
$>$ Largest exponent: 1023; Smallest $=-1022$.
$>c=0$ and $c=2047$ (all ones) are again for 0 and ∞
$>$ Including the hidden bit, mantissa has total of 53 bits (52 bits represented, one hidden).
$>$ In single precision, mantissa has total of 24 bits (23 bits represented, one hidden).

GvL 2.7 - FloatSuppl

Special Values

> Exponent field $=00000000000$ (smallest possible value) No hidden bit. All bits $==0$ means exactly zero.
$>$ Allow for unnormalized numbers, leading to gradual underflow.
> Exponent field = 11111111111 (largest possible value) Number represented is "Inf" "-Inf" or "NaN".
\propto_{011} Take the number 1.0 and see what will happen if you add $1 / 2,1 / 4, \ldots, 2^{-i}$. Do not forget the hidden bit!

Hidden bit				(Not represented)									
Expon. $\downarrow \leftarrow$				52 bits				\rightarrow					
e	1	1	0	0	0	0	0	0	0	0	0		0
e	1	0	1	0	0	0	0	0	0	0	0		0
e	1	0	0	1	0	0	0	0	0	0	0		0
.......													
e	1	0	0	0	0	0	0	0	0	0	0		1
e	1	0	0	0	0	0	0	0	0	0	0		0

(Note: The 'e' part has 12 bits and includes the sign)
> Conclusion

$$
f l\left(1+2^{-52}\right) \neq 1 \text { but: } f l\left(1+2^{-53}\right)==1!!
$$

4-34

Recent trend: GPUs

> Graphics Processor Units: Very fast boards attached to CPUs for heavy-duty computing
$>$ e.g., NVIDIA V100 can deliver 112 Teraflops (1 Teraflops $=10^{12}$ operations per second) for certain types of computations.
> Single precision much faster than double ...
$>\ldots$ and there is also "half-precision" which is ≈ 16 times faster than standard 64bit arithmetic
> Used primarily for Deep-learning
\qquad

