
ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF

LINEAR EQUATIONS

• Conditioning of linear systems.

• Estimating errors for solutions of linear systems

• (Normwise) Backward error analysis

• Estimating condition numbers ..
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Perturbation analysis for linear systems (Ax = b)

Question addressed by perturbation analysis: determine the variation of the
solution x when the data, namelyA and b, undergoes small variations. Problem is
Ill-conditioned if small variations in data cause very large variation in the solution.

Setting:

ä We perturb A into A+E and b into b+ eb. Can we bound the resulting change
(perturbation) to the solution?

Preparation: We begin with a lemma for a simple case
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Rigorous norm-based error bounds

LEMMA: If ‖E‖ < 1 then I − E is nonsingular and

‖(I − E)−1‖ ≤ 1
1−‖E‖

Proof is based on following 5 steps

a) Show: If ‖E‖ < 1 then I − E is nonsingular

b) Show: (I − E)(I + E + E2 + · · ·+ Ek) = I − Ek+1.

c) From which we get:

(I − E)−1 =
k∑
i=0

Ei + (I − E)−1Ek+1 →
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d) (I − E)−1 = limk→∞
∑k
i=0E

i. We write this as

(I − E)−1 =
∞∑
i=0

Ei

e) Finally:

‖(I − E)−1‖ =

∥∥∥∥∥ lim
k→∞

k∑
i=0

Ei

∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥
k∑
i=0

Ei

∥∥∥∥∥
≤ lim

k→∞

k∑
i=0

∥∥∥Ei
∥∥∥ ≤ lim

k→∞

k∑
i=0

‖E‖i

≤
1

1− ‖E‖
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ä Can generalize result:

LEMMA: If A is nonsingular and ‖A−1‖ ‖E‖ < 1 then A + E is non-singular
and

‖(A+ E)−1‖ ≤ ‖A−1‖
1−‖A−1‖ ‖E‖

ä Proof is based on relation A+E = A(I +A−1E) and use of previous lemma.

ä Now we can prove the main theorem:

THEOREM 1: Assume that (A + E)y = b + eb and Ax = b and that
‖A−1‖‖E‖ < 1. Then A+ E is nonsingular and

‖x− y‖
‖x‖

≤
‖A−1‖ ‖A‖

1− ‖A−1‖ ‖E‖

(‖E‖
‖A‖

+
‖eb‖
‖b‖

)
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Proof: From (A+ E)y = b+ eb and Ax = b we get
(A+ E)(y − x) = eb − Ex. Hence:

y − x = (A+ E)−1(eb − Ex)

Taking norms→ ‖y−x‖ ≤ ‖(A+E)−1‖ [‖eb‖+ ‖E‖‖x‖] Dividing by ‖x‖ and
using result of lemma

‖y − x‖
‖x‖

≤ ‖(A+ E)−1‖ [‖eb‖/‖x‖+ ‖E‖]

≤
‖A−1‖

1− ‖A−1‖‖E‖
[‖eb‖/‖x‖+ ‖E‖]

≤
‖A−1‖‖A‖

1− ‖A−1‖‖E‖

[ ‖eb‖
‖A‖‖x‖

+
‖E‖
‖A‖

]
Result follows by using inequality ‖A‖‖x‖ ≥ ‖b‖.... QED
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The quantity κ(A) = ‖A‖ ‖A−1‖ is called the condition number of the
linear system with respect to the norm ‖.‖. When using the p-norms we
write:

κp(A) = ‖A‖p‖A−1‖p

ä Note: κ2(A) = σmax(A)/σmin(A) = ratio of largest to smallest singular values
of A. Allows to define κ2(A) when A is not square.

ä Determinant *is not* a good indication of sensitivity

ä Small eigenvalues *do not* always give a good indication of poor conditioning.
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Example: Consider, for a large α, the n× n matrix

A = I + αe1e
T
n

ä Inverse of A is : A−1 = I − αe1e
T
n ä For the∞-norm we have

‖A‖∞ = ‖A−1‖∞ = 1 + |α|

so that κ∞(A) = (1 + |α|)2.

ä Can give a very large condition number for a large α – but all the eigenvalues of
A are equal to one.
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-1 Show that κ(I) = 1 ;

-2 Show that κ(A) ≥ 1 ;

-3 Show that κ(A) = κ(A−1)

-4 Show that for α 6= 0, we have κ(αA) = κ(A)
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Simplification when eb = 0 :

‖x− y‖
‖x‖

≤
‖A−1‖ ‖E‖

1− ‖A−1‖ ‖E‖

Simplification when E = 0 :

‖x− y‖
‖x‖

≤ ‖A−1‖ ‖A‖
‖eb‖
‖b‖

ä Slightly less general form: Assume that ‖E‖/‖A‖ ≤ δ and ‖eb‖/‖b‖ ≤ δ and
δκ(A) < 1 then

‖x− y‖
‖x‖

≤
2δκ(A)

1− δκ(A)

-5 Show the above result
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Another common form:

THEOREM 2: Let (A + ∆A)y = b + ∆b and Ax = b where ‖∆A‖ ≤ ε‖E‖,
‖∆b‖ ≤ ε‖eb‖, and assume that ε‖A−1‖‖E‖ < 1. Then

‖x− y‖
‖x‖

≤
ε ‖A−1‖ ‖A‖

1− ε‖A−1‖ ‖E‖

(‖eb‖
‖b‖

+
‖E‖
‖A‖

)

ä Results to be seen later are of this type.
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Normwise backward error

ä We solve Ax = b and find an approximate solution y

Question: Find smallest perturbation to apply to A, b so that *exact* solution of
perturbed system is y
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Normwise backward error in just A or b

Suppose we model entire perturbation in RHS b.

ä Let r = b−Ay be the residual.
Then y satisfies Ay = b+ ∆b with ∆b = −r exactly.

ä The relative perturbation to the RHS is ‖r‖‖b‖.

Suppose we model entire perturbation in matrix A.

ä Then y satisfies
(
A+ ryT

yTy

)
y = b

ä The relative perturbation to the matrix is∥∥∥∥∥ryTyTy

∥∥∥∥∥
2

/‖A‖2 =
‖r‖2

‖A‖‖y‖2
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Normwise backward error in both A & b

For a given y and given perturbation directions E, eb, we define the Normwise
backward error:

ηE,eb(y) = min{ε | (A+ ∆A)y = b+ ∆b;

where ∆A,∆b satisfy: ‖∆A‖ ≤ ε‖E‖;
and ‖∆b‖ ≤ ε‖eb‖}

In other words ηE,eb(y) is the smallest ε for which

(1)

{
(A+ ∆A)y = b+ ∆b;

‖∆A‖ ≤ ε‖E‖; ‖∆b‖ ≤ ε‖eb‖
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ä y is given (a computed solution). E and eb to be selected (most likely ’directions
of perturbation for A and b’).

ä Typical choice: E = A, eb = b

-6 Explain why this is not unreasonable

Let r = b−Ay. Then we have:

THEOREM 3: ηE,eb(y) = ‖r‖
‖E‖‖y‖+‖eb‖

Normwise backward error is for case E = A, eb = b:

ηA,b(y) = ‖r‖
‖A‖‖y‖+‖b‖
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-7 Show how this can be used in practice as a means to stop some iterative method
which computes a sequence of approximate solutions to Ax = b.

-8 Consider the 6 × 6 Vandermonde system Ax = b where aij = j2(i−1),
b = A ∗ [1, 1, · · · , 1]T . We perturb A by E, with |E| ≤ 10−10|A| and b similarly
and solve the system. Evaluate the backward error for this case. Evaluate the forward
bound provided by Theorem 2. Comment on the results.

5-16 GvL 3.5 – Pert

5-16



Estimating condition numbers.

ä Often we just want to get a lower bound for condition number [it is ‘worse than ...’]

ä We want to estimate ‖A‖ ‖A−1‖.

ä The norm ‖A‖ is usually easy to compute but ‖A−1‖ is not.

ä We want: Avoid the expense of computing A−1 explicitly.

Idea:

ä Select a vector v so that ‖v‖ = 1 but ‖Av‖ = τ is small.

ä Then: ‖A−1‖ ≥ 1/τ (show why) and:

κ(A) ≥ ‖A‖
τ
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ä Condition number worse than ‖A‖/τ .

ä Typical choice for v: choose [· · ·±1 · · · ] with signs chosen on the fly during back-
substitution to maximize the next entry in the solution, based on the upper triangular
factor from Gaussian Elimination.

ä Similar techniques used to estimate condition numbers of large matrices in
matlab.
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Condition numbers and near-singularity

ä 1/κ ≈ relative distance to nearest singular matrix.

Let A,B be two n× n matrices with A nonsingular and B singular. Then

1

κ(A)
≤
‖A−B‖
‖A‖

Proof: B singular → ∃ x 6= 0 such that Bx = 0.

‖x‖ = ‖A−1Ax‖ ≤ ‖A−1‖ ‖Ax‖ = ‖A−1‖‖(A−B)x‖
≤ ‖A−1‖ ‖A−B‖‖x‖

Divide both sides by ‖x‖ × κ(A) = ‖x‖‖A‖ ‖A−1‖ ä result. QED.
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Example:

let A =

(
1 1

1 0.99

)
and B =

(
1 1

1 1

)
Then 1

κ1(A)
≤ 0.01

2
ä κ1(A) ≥ 2

0.01
= 200.

ä It can be shown that (Kahan)

1

κ(A)
= min

B

{‖A−B‖
‖A‖

| det(B) = 0

}
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Estimating errors from residual norms

Let x̃ an approximate solution to systemAx = b (e.g., computed from an iterative
process). We can compute the residual norm:

‖r‖ = ‖b−Ax̃‖

Question: How to estimate the error ‖x− x̃‖ from ‖r‖?

ä One option is to use the inequality

‖x−x̃‖
‖x‖ ≤ κ(A) ‖r‖‖b‖.

ä We must have an estimate of κ(A).
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Proof of inequality.

First, note that A(x− x̃) = b−Ax̃ = r. So:

‖x− x̃‖ = ‖A−1r‖ ≤ ‖A−1‖ ‖r‖

Also note that from the relation b = Ax, we get

‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ → ‖x‖ ≥
‖b‖
‖A‖

Therefore,

‖x− x̃‖
‖x‖

≤
‖A−1‖ ‖r‖
‖b‖/‖A‖

= κ(A)
‖r‖
‖b‖

-9 Show that
‖x−x̃‖
‖x‖ ≥

1
κ(A)

‖r‖
‖b‖.
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