ERROR AND SENSITIVITY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS

- · Conditioning of linear systems.
- Estimating errors for solutions of linear systems
- (Normwise) Backward error analysis
- Estimating condition numbers ..

Rigorous norm-based error bounds

LEMMA: If $\|E\| < 1$ then I - E is nonsingular and

$$||(I-E)^{-1}|| \le \frac{1}{1-||E||}$$

Proof is based on following 5 steps

- a) Show: If $\|E\| < 1$ then I E is nonsingular
- b) Show: $(I-E)(I+E+E^2+\cdots+E^k)=I-E^{k+1}$.
- c) From which we get:

$$(I-E)^{-1} = \sum_{i=0}^k E^i + (I-E)^{-1} E^{k+1}
ightarrow$$

Perturbation analysis for linear systems (Ax = b)

Question addressed by perturbation analysis: determine the variation of the solution x when the data, namely A and b, undergoes small variations. Problem is Ill-conditioned if small variations in data cause very large variation in the solution.

Setting:

 \blacktriangleright We perturb A into A+E and b into $b+e_b$. Can we bound the resulting change (perturbation) to the solution?

Preparation: We begin with a lemma for a simple case

GvL 3.5 – Pert

d)
$$(I-E)^{-1} = \lim_{k \to \infty} \sum_{i=0}^k E^i$$
. We write this as

$$(I-E)^{-1} = \sum_{i=0}^{\infty} E^i$$

e) Finally:

$$egin{aligned} \|(I-E)^{-1}\| &= \left\|\lim_{k o\infty}\sum_{i=0}^k E^i
ight\| = \lim_{k o\infty}\left\|\sum_{i=0}^k E^i
ight\| \ &\leq \lim_{k o\infty}\sum_{i=0}^k \left\|E^i
ight\| \leq \lim_{k o\infty}\sum_{i=0}^k \|E\|^i \ &\leq rac{1}{1-\|E\|} \end{aligned}$$

GvL 3.5 – Pert 5-4 GvL 3.5 – Pert

Can generalize result:

LEMMA: If A is nonsingular and $\|A^{-1}\|$ $\|E\| < 1$ then A + E is non-singular and

$$\|(A+E)^{-1}\| \leq \frac{\|A^{-1}\|}{1-\|A^{-1}\| \|E\|}$$

- ightharpoonup Proof is based on relation $A+E=A(I+A^{-1}E)$ and use of previous lemma.
- Now we can prove the main theorem:

THEOREM 1: Assume that $(A+E)y=b+e_b$ and Ax=b and that $\|A^{-1}\|\|E\|<1$. Then A+E is nonsingular and

$$\| rac{\|x-y\|}{\|x\|} \leq rac{\|A^{-1}\| \, \|A\|}{1-\|A^{-1}\| \, \|E\|} \left(rac{\|E\|}{\|A\|} + rac{\|e_b\|}{\|b\|}
ight)$$

5-5 ______ GvL 3.5 – Pert

The quantity $\kappa(A) = \|A\| \|A^{-1}\|$ is called the condition number of the linear system with respect to the norm $\|.\|$. When using the p-norms we write:

$$\kappa_p(A) = \|A\|_p \|A^{-1}\|_p$$

- Note: $\kappa_2(A) = \sigma_{max}(A)/\sigma_{min}(A)$ = ratio of largest to smallest singular values of A. Allows to define $\kappa_2(A)$ when A is not square.
- Determinant *is not* a good indication of sensitivity
- Small eigenvalues *do not* always give a good indication of poor conditioning.

Proof: From $(A+E)y=b+e_b$ and Ax=b we get $(A+E)(y-x)=e_b-Ex$. Hence:

$$y - x = (A + E)^{-1}(e_b - Ex)$$

Taking norms $\to \|y-x\| \le \|(A+E)^{-1}\| \, [\|e_b\|+\|E\|\|x\|]$ Dividing by $\|x\|$ and using result of lemma

$$egin{aligned} rac{\|y-x\|}{\|x\|} & \leq \|(A+E)^{-1}\| \left[\|e_b\|/\|x\| + \|E\|
ight] \ & \leq rac{\|A^{-1}\|}{1-\|A^{-1}\|\|E\|} \left[\|e_b\|/\|x\| + \|E\|
ight] \ & \leq rac{\|A^{-1}\|\|A\|}{1-\|A^{-1}\|\|E\|} \left[rac{\|e_b\|}{\|A\|\|x\|} + rac{\|E\|}{\|A\|}
ight] \end{aligned}$$

Result follows by using inequality $\|A\| \|x\| \geq \|b\|$

QED

6 _____ GvL 3.5 – Pert

Example: Consider, for a large α , the $n \times n$ matrix

$$A = I + \alpha e_1 e_n^T$$

lacksquare Inverse of A is : $A^{-1}=I-\alpha e_1e_n^T$ lacksquare For the ∞ -norm we have

$$||A||_{\infty} = ||A^{-1}||_{\infty} = 1 + |\alpha|$$

so that

$$\kappa_{\infty}(A) = (1+|lpha|)^2$$
.

ightharpoonup Can give a very large condition number for a large α – but all the eigenvalues of A are equal to one.

5-7 ______ GvL 3.5 – Pert

5-8

Show that $\kappa(I) = 1$;

Show that for lpha
eq 0, we have $\kappa(lpha A) = \kappa(A)$

Simplification when $e_b = 0$:

$$rac{\|x-y\|}{\|x\|} \leq rac{\|A^{-1}\| \, \|E\|}{1-\|A^{-1}\| \, \|E\|}$$

Simplification when E=0:

$$\displaystyle rac{\|x-y\|}{\|x\|} \leq \|A^{-1}\| \ \|A\| rac{\|e_b\|}{\|b\|}$$

ightharpoonup Slightly less general form: Assume that $\|E\|/\|A\| \le \delta$ and $\|e_b\|/\|b\| \le \delta$ and $\delta\kappa(A) < 1$ then

$$rac{\|x-y\|}{\|x\|} \leq rac{2\delta\kappa(A)}{1-\delta\kappa(A)}$$

≤ Show the above result

-9 _____ GvL 3.5 – Pert

Another common form:

THEOREM 2: Let $(A+\Delta A)y=b+\Delta b$ and Ax=b where $\|\Delta A\|\leq \epsilon\|E\|$, $\|\Delta b\|\leq \epsilon\|e_b\|$, and assume that $\epsilon\|A^{-1}\|\|E\|<1$. Then

$$\left\| rac{\left\| x - y
ight\|}{\left\| x
ight\|} \leq rac{\epsilon \left\| A^{-1}
ight\| \left\| A
ight\|}{1 - \epsilon \left\| A^{-1}
ight\| \left\| E
ight\|} \left(rac{\left\| e_b
ight\|}{\left\| b
ight\|} + rac{\left\| E
ight\|}{\left\| A
ight\|}
ight)$$

> Results to be seen later are of this type.

Normwise backward error

ightharpoonup We solve Ax=b and find an approximate solution y

Question: Find smallest perturbation to apply to A,b so that *exact* solution of perturbed system is y

5-11 ______ GvL 3.5 – Pert

5-12

GvL 3.5 - Pert

Normwise backward error in just A or b

Suppose we model entire perturbation in RHS b.

- Let r=b-Ay be the residual. Then y satisfies $Ay=b+\Delta b$ with $\Delta b=-r$ exactly.
- ▶ The relative perturbation to the RHS is $\frac{||r||}{||b||}$.

Suppose we model entire perturbation in matrix A.

- igwedge Then y satisfies $\left(A+rac{ry^T}{y^Ty}
 ight)y=b$
- ➤ The relative perturbation to the matrix is

$$\left\| rac{ry^T}{y^Ty}
ight\|_2 / \|A\|_2 = rac{\|r\|_2}{\|A\| \|y\|_2}$$

5-13 _____ GvL 3.5

- \triangleright y is given (a computed solution). E and e_b to be selected (most likely 'directions of perturbation for A and b').
- ightharpoonup Typical choice: E = A, $e_b = b$
- Explain why this is not unreasonable

Let r = b - Ay. Then we have:

THEOREM 3:
$$\eta_{E,e_b}(y) = \frac{\|r\|}{\|E\|\|y\|+\|e_b\|}$$

Normwise backward error is for case $E = A, e_b = b$:

$$\eta_{A,b}(y) = rac{\|r\|}{\|A\| \|y\| + \|b\|}$$

Normwise backward error in both A & b

For a given y and given perturbation directions E, e_b , we define the Normwise backward error:

$$egin{aligned} \eta_{E,e_b}(y) &= \min\{\epsilon \mid (A+\Delta A)y = b+\Delta b; \ & ext{where } \Delta A, \Delta b \ & ext{ satisfy: } \|\Delta A\| \leq \epsilon \|E\|; \ & ext{ and } \|\Delta b\| \leq \epsilon \|e_b\| \} \end{aligned}$$

In other words $\eta_{E,e_b}(y)$ is the smallest ϵ for which

$$(1) \left\{ egin{array}{ll} (A+\Delta A)y = & b+\Delta b; \ \|\Delta A\| \leq \epsilon \|E\|; & \|\Delta b\| \leq \epsilon \|e_b\| \end{array}
ight.$$

Show how this can be used in practice as a means to stop some iterative method

which computes a sequence of approximate solutions to Ax = b.

GvL 3.5 - Pert

Consider the 6×6 Vandermonde system Ax=b where $a_{ij}=j^{2(i-1)}$, $b=A*[1,1,\cdots,1]^T$. We perturb A by E, with $|E|\leq 10^{-10}|A|$ and b similarly and solve the system. Evaluate the backward error for this case. Evaluate the forward bound provided by Theorem 2. Comment on the results.

5-15 GvL 3.5 – Pert

Estimating condition numbers.

- ➤ Often we just want to get a lower bound for condition number [it is 'worse than ...']
- \blacktriangleright We want to estimate $||A|| ||A^{-1}||$.
- ightharpoonup The norm ||A|| is usually easy to compute but $||A^{-1}||$ is not.
- \triangleright We want: Avoid the expense of computing A^{-1} explicitly.

Idea:

- ightharpoonup Select a vector v so that $\|v\|=1$ but $\|Av\|= au$ is small.
- Then: $||A^{-1}|| \ge 1/\tau$ (show why) and:

$$\kappa(A) \geq rac{\|A\|}{ au}$$

- \triangleright Condition number worse than $||A||/\tau$.
- Typical choice for v: choose $[\cdots \pm 1 \cdots]$ with signs chosen on the fly during back-substitution to maximize the next entry in the solution, based on the upper triangular factor from Gaussian Elimination.
- ➤ Similar techniques used to estimate condition numbers of large matrices in matlab.

5-17 ______ GvL 3.5 – Pert

Condition numbers and near-singularity

 $ightharpoonup 1/\kappa pprox {
m relative}$ distance to nearest singular matrix.

Let A,B be two $n \times n$ matrices with A nonsingular and B singular. Then

$$\frac{1}{\kappa(A)} \le \frac{\|A - B\|}{\|A\|}$$

Proof: B singular $\rightarrow \exists x \neq 0$ such that Bx = 0.

$$||x|| = ||A^{-1}Ax|| \le ||A^{-1}|| \, ||Ax|| = ||A^{-1}|| \, ||(A-B)x||$$

 $\le ||A^{-1}|| \, ||A-B|| \, ||x||$

Divide both sides by $\|x\| imes \kappa(A) = \|x\| \|A\| \|A^{-1}\| imes$ result. QED.

Example:

let
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0.99 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Then $\frac{1}{\kappa_1(A)} \leq \frac{0.01}{2} \triangleright \kappa_1(A) \geq \frac{2}{0.01} = 200$.

➤ It can be shown that (Kahan)

$$rac{1}{\kappa(A)} = \min_{B} \; \left\{ rac{\|A-B\|}{\|A\|} \; \mid \; \det(B) = 0
ight\}$$

5-19 ______ GvL 3.5 – Per

5-20

Estimating errors from residual norms

Let \tilde{x} an approximate solution to system Ax=b (e.g., computed from an iterative process). We can compute the residual norm:

$$\|r\| = \|b - A ilde{x}\|$$

Question: How to estimate the error $||x - \tilde{x}||$ from ||r||?

One option is to use the inequality

$$rac{\|x- ilde{x}\|}{\|x\|} \leq \kappa(A) \, rac{\|r\|}{\|b\|}.$$

ightharpoonup We must have an estimate of $\kappa(A)$.

Proof of inequality.

First, note that $A(x- ilde{x})=b-A ilde{x}=r$. So:

$$\|x - \tilde{x}\| = \|A^{-1}r\| \le \|A^{-1}\| \, \|r\|$$

Also note that from the relation b = Ax, we get

$$\|b\| = \|Ax\| \leq \|A\| \ \|x\| \quad o \quad \|x\| \geq rac{\|b\|}{\|A\|}$$

Therefore,

$$rac{\|x- ilde{x}\|}{\|x\|} \leq rac{\|A^{-1}\| \ \|r\|}{\|b\|/\|A\|} \ = \ \kappa(A)rac{\|r\|}{\|b\|} \qquad \square$$

№9 Show that

$$\frac{\|x-\tilde{x}\|}{\|x\|} \geq \frac{1}{\kappa(A)} \frac{\|r\|}{\|b\|}.$$

5-21 ______ GvL 3.5 – Pert

5-22