SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES SPD LINEAR SYSTEMS

- Symmetric positive definite matrices.
- ullet The LDL^T decomposition; The Cholesky factorization

Positive-Definite Matrices

A real matrix is said to be positive definite if

$$(Au,u)>0$$
 for all $u
eq 0$ $u\in \mathbb{R}^n$

 \blacktriangleright Let A be a real positive definite matrix. Then there is a scalar $\alpha>0$ such that

$$(Au,u) \geq lpha \|u\|_2^2.$$

- Consider now the case of Symmetric Positive Definite (SPD) matrices.
- ightharpoonup Consequence 1: $oldsymbol{A}$ is nonsingular
- \triangleright Consequence 2: the eigenvalues of A are (real) positive

A few properties of SPD matrices

- Diagonal entries of A are positive
- Recall: the k-th principal submatrix A_k is the $k \times k$ submatrix of A with entries $a_{ij}, \ 1 \leq i, j \leq k$ (Matlab: A(1:k,1:k)).
- Consequence: $Det(A_k) > 0$ for $k = 1, \dots, n$. In fact A is SPD iff this condition holds.
- If A is SPD then for any $n \times k$ matrix X of rank k, the matrix X^TAX is SPD.

GvL 4 – SPD

ightharpoonup The mapping : $x,y o (x,y)_A \equiv (Ax,y)$

defines a proper inner product on \mathbb{R}^n . The associated norm, denoted by $\|.\|_A$, is called the energy norm, or simply the A-norm:

$$\|x\|_A = (Ax,x)^{1/2} = \sqrt{x^T Ax}$$

➤ Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors:

$$d_A(x,y) = \|x-y\|_A = \sqrt{(x-y)^T A (x-y)}$$

Appropriate distance (measured in # standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix A and center y.

More terminology

A matrix is Positive Semi-Definite if:

- $(Au,u)\geq 0$ for all $u\in \mathbb{R}^n$
- ➤ Eigenvalues of symmetric positive semi-definite matrices are real nonnegative, i.e., ...
- \triangleright ... A can be singular [If not, A is SPD]
- ightharpoonup A matrix is said to be Negative Definite if -A is positive definite. Similar definition for Negative Semi-Definite
- A matrix that is neither positive semi-definite nor negative semi-definite is indefinite
- Show that if $A^T = A$ and $(Ax, x) = 0 \ \forall x$ then A = 0
- Show: $A \neq 0$ is indefinite iff $\exists \ x,y: (Ax,x)(Ay,y) < 0$

6-5

The LDL^T and Cholesky factorizations

- ightharpoonup Let A=LU and D=diag(U) and set $M\equiv (D^{-1}U)^T$.

Then

$$A = LU = LD(D^{-1}U) = LDM^T$$

- \blacktriangleright Both L and M are unit lower triangular
- ightharpoonup Consider $L^{-1}AL^{-T}=DM^TL^{-T}$
- Matrix on the right is upper triangular. But it is also symmetric. Therefore $M^TL^{-T}=I$ and so M=L

GvL 4 - SPD

- ightharpoonup Alternative proof: exploit uniqueness of LU factorization without pivoting + symmetry: $A = LDM^T = MDL^T o M = L$
- The diagonal entries of D are positive [Proof: consider $L^{-1}AL^{-T}=D$]. In the end:

$$A = LDL^T = GG^T$$
 where $G = LD^{1/2}$

➤ Cholesky factorization is a specialization of the LU factorization for the SPD case. Several variants exist.

GvL 4 – SPD

First algorithm: row-oriented LDLT

Adapted from Gaussian Elimination. Main observation: The working matrix A(k+1): n, k+1:n) in standard LU remains symmetric.

→ Work only on its upper triangular part & ignore lower part

```
1. For k = 1 : n - 1 Do:
   For i = k + 1 : n Do:
        piv := a(k,i)/a(k,k)
        a(i,i:n) := a(i,i:n) - piv * a(k,i:n)
5.
     End
6. End
```

This will give the U matrix of the LU factorization. Therefore D = diag(U), $L^T = D^{-1}U$.

Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes

$$a(i,:) := a(i,:) - \left[a(k,i)/\sqrt{a(k,k)}
ight] \, * \, \left[a(k,:)/\sqrt{a(k,k)}
ight]$$

ALGORITHM: 1 • Outer product Cholesky

- 1. For k = 1 : n Do:
- 2. $A(k,k:n) = A(k,k:n) / \sqrt{A(k,k)}$;
- 3. For i := k + 1 : n Do :
- 4. A(i, i:n) = A(i, i:n) A(k, i) * A(k, i:n);
- 5. End
- 6. End
- \blacktriangleright Result: Upper triangular matrix U such $A = U^T U$.

GvL 4 - SPD

Example:

$$A = egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

- ✓ Is A symmetric positive definite?
- Mhat is the $oldsymbol{L}oldsymbol{D}oldsymbol{L}^T$ factorization of $oldsymbol{A}$?
- Mhat is the Cholesky factorization of A?

6-10

Column Cholesky. Let $A = GG^T$ with G = lower triangular. Then equate j-th columns:

$$a(:,j) = \sum_{k=1}^j g(:,k) g^T(k,j)
ightarrow$$

$$egin{align} A(:,j) &= \sum_{k=1}^{j} G(j,k) G(:,k) \ &= G(j,j) G(:,j) + \sum_{k=1}^{j-1} G(j,k) G(:,k)
ightarrow \ G(j,j) G(:,j) &= A(:,j) - \sum_{k=1}^{j-1} G(j,k) G(:,k) \ \end{array}$$

GvL 4 – SPD

- \blacktriangleright Assume that first j-1 columns of G already known.
- Compute unscaled column-vector:

$$v = A(:,j) - \sum_{k=1}^{j-1} G(j,k) G(:,k)$$

- ightharpoonup Notice that $v(j) \equiv G(j,j)^2$.
- ightharpoonup Compute $\sqrt{v(j)}$ and scale v to get j-th column of G.

_____ GvL 4 – SPD

ALGORITHM: 2 Column Cholesky

- 1. For j = 1 : n do
- 2. For k = 1 : j 1 do
- 3. A(j:n,j) = A(j:n,j) A(j,k) * A(j:n,k)
- 4. EndDo
- 5. If $A(j,j) \leq 0$ ExitError("Matrix not SPD")
- 6. $A(j,j) = \sqrt{A(j,j)}$
- 7. A(j+1:n,j) = A(j+1:n,j)/A(j,j)
- 8. EndDo

$$A = egin{pmatrix} 1 & -1 & 2 \ -1 & 5 & 0 \ 2 & 0 & 9 \end{pmatrix}$$

6-13