SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES SPD LINEAR SYSTEMS • Symmetric positive definite matrices. • The LDL^T decomposition; The Cholesky factorization	 Positive-Definite Matrices A real matrix is said to be positive definite if (Au, u) > 0 for all u ≠ 0 u ∈ ℝⁿ Let A be a real positive definite matrix. Then there is a scalar α > 0 such that (Au, u) ≥ α u ₂². Consider now the case of Symmetric Positive Definite (SPD) matrices. 	
	 Consequence 2: the eigenvalues of <i>A</i> are (real) positive <u>6-2</u> GvL 4 – SPD 	
A few properties of SPD matrices> Diagonal entries of A are positive> Recall: the k-th principal submatrix A_k is the $k \times k$ submatrix of A with entries $a_{ij}, 1 \le i, j \le k$ (Matlab: $A(1:k, 1:k)$). \blacksquare 1 Each A_k is SPD \blacksquare 2 Consequence: $Det(A_k) > 0$ for $k = 1, \dots, n$. In fact A is SPD iff this condition holds. \blacksquare 3 If A is SPD then for any $n \times k$ matrix X of rank k, the matrix $X^T A X$ is SPD.	 The mapping: x, y → (x, y)_A ≡ (Ax, y) defines a proper inner product on ℝⁿ. The associated norm, denoted by . _A, is called the energy norm, or simply the A-norm: x _A = (Ax, x)^{1/2} = √x^TAx Related measure in Machine Learning, Vision, Statistics: the Mahalanobis distance between two vectors: d_A(x, y) = x - y _A = √(x - y)^TA(x - y) Appropriate distance (measured in # standard deviations) if x is a sample generated by a Gaussian distribution with covariance matrix A and center y. 	
6-3 GvL 4 – SPD	6-4	

More terminology	The LDL ¹ and Cholesky factorizations		
➤ A matrix is Positive Semi-Definite if: $(Au, u) \ge 0 \text{ for all } u \in \mathbb{R}^n$	Z ^{\bullet} The (standard) LU factorization of an SPD matrix A exists		
Eigenvalues of symmetric positive semi-definite matrices are real nonnegative,	Let $A = LU$ and $D = diag(U)$ and set $M \equiv (D^{-1}U)^T$.		
 A can be singular [If not, A is SPD] 	Then $A = LU = LD(D^{-1}U) = LDM^{T}$ > Both L and M are unit lower triangular		
> A matrix is said to be Negative Definite if $-A$ is positive definite. Similar definition for Negative Semi-Definite	$\blacktriangleright \text{ Consider } L^{-1}AL^{-T} = DM^TL^{-T}$		
A matrix that is neither positive semi-definite nor negative semi-definite is indefinite nite	> Matrix on the right is upper triangular. But it is also symmetric. Therefore $M^T L^{-T} = I$ and so $M = L$		
Z14 Show that if $A^T = A$ and $(Ax, x) = 0 \ \forall x$ then $A = 0$			
Show: $A \neq 0$ is indefinite iff $\exists x, y : (Ax, x)(Ay, y) < 0$			
6-5 GvL 4 – SPD	6-6 GvL 4 – SPD		
► Alternative proof: exploit uniqueness of LU factorization without pivoting + symmetry: $A = LDM^T = MDL^T \rightarrow M = L$	First algorithm: row-oriented LDLT		
> The diagonal entries of <i>D</i> are positive [Proof: consider $L^{-1}AL^{-T} = D$]. In the end:	Adapted from Gaussian Elimination. Main observation: The working matrix $A(k+1: n, k+1: n)$ in standard LU remains symmetric.		
$A = LDL^T = GG^T$ where $G = LD^{1/2}$	ightarrow Work only on its upper triangular part & ignore lower part		
Cholesky factorization is a specialization of the LU factorization for the SPD case. Several variants exist.	1. For $k = 1 : n - 1$ Do: 2. For $i = k + 1 : n$ Do: 3. $piv := a(k,i)/a(k,k)$ 4. $a(i,i:n) := a(i,i:n) - piv * a(k,i:n)$ 5. End 6. End		
	> This will give the U matrix of the LU factorization. Therefore $D = diag(U)$, $L^T = D^{-1}U$.		
6-7 GvL 4 – SPD	6-8 GvL 4 – SPD		

Row-Cholesky (outer product form)		Example:	
Scale the rows as the algorithm proceeds. Line 4 becomes		(1 - 12)	
$a(i,:):=a(i,:)-[a(k,i)/\sqrt{a(k,k)}]*\left[a(k,:)/\sqrt{a(k,k)} ight]$		$A = \begin{pmatrix} 1 & 1 & 2 \\ -1 & 5 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	
ALGORITHM : 1 • Outer product Cholesky		$\begin{pmatrix} 2 & 0 & 9 \end{pmatrix}$	
1. For $k = 1 : n$ Do:		\swarrow_{7} Is A symmetric positive definite?	
2. $A(k,k:n) = A(k,k:n) / \sqrt{A(k,k)}$;		What is the LDL^{I} factorization of A ?	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		What is the Cholesky factorization of A ?	
5. End			
o. Liiu			
> Result: Upper triangular matrix U such $A = U^T U$.			
6-9	GvL 4 – SPD	6-10	GvL 4 – SPD
Column Cholesky. Let $A = GG^T$ with G = lower triangular. Then	equate j -th	> Assume that first $j - 1$ columns of G already known.	
		Compute unscaled column-vector:	
$a(:,j) = \sum_{k=1}^{j} g(:,k) g^{ extsf{i}}(k,j) ightarrow$		j-1	
		$v=A(:,j)-\sum_{k=1}G(j,k)G(:,k)$	
		Notice that $w(i) = C(i, i)^2$	
$A(:,\jmath) = \sum_{k=1}^{} G(\jmath,k) G(:,k)$		Compute $\sqrt{w(i)}$ and scale w to get i the column of C	
$= G(i, i)G(:, i) + \sum_{k=1}^{j-1} G(i, k)G(:, k) \rightarrow 0$		\sim compute $\sqrt{v(y)}$ and scale v to get y -th column of G .	
(j,j) (j,j) (j,j) (j,j) (j,j)			
$G(j,j)G(:,j)=A(:,j)-\sum^{j-1}G(j,k)G(:,k)$			
k=1			
6-11	GvL 4 – SPD	6-12	GvL 4 – SPD

ALGORITHM : 2 Column Cholesky

1. For j = 1:n do

2. For k = 1 : j - 1 do 3. A(j : n, j) = A(j : n, j) - A(j, k) * A(j : n, j)

3.
$$A(j:n,j) = A(j:n,j) - A(j,k) * A(j:n,k)$$

- 4. EndDo
- 5. If $A(j, j) \leq 0$ ExitError("Matrix not SPD")
- 6. $A(j,j) = \sqrt{A(j,j)}$

7.
$$A(j+1:n,j) = A(j+1:n,j)/A(j,j)$$

8. EndDo

10 Try algorithm on:

$$A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 9 \end{pmatrix}$$

6-13 GvL 4 - SPD