SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES
SPD LINEAR SYSTEMS

e Symmetric positive definite matrices.

e The LDL™ decomposition; The Cholesky factorization

Positive-Definite Matrices

» A real matrix is said to be positive definite if
(Au,u) > Oforallu #0u € R™

» Let A be a real positive definite matrix. Then there is a scalar a > 0 such that

(Au,u) > aflull3.

» Consider now the case of Symmetric Positive Definite (SPD) matrices.
» Consequence 1: A is nonsingular

» Consequence 2: the eigenvalues of A are (real) positive
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A few properties of SPD matrices
» Diagonal entries of A are positive

» Recall: the k-th principal submatrix Ay is the k x k submatrix of A with entries
a;j, 1 <1i,5 <k (Matlab: A(1: k,1: k)).

Each A is SPD

Consequence: Det(Ay) > 0for k = 1,--- ,n. Infact A is SPD iff this
condition holds.

If A'is SPD then for any n x k matrix X of rank k, the matrix X7 A X is SPD.
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» Themapping: =,y — (z,y)a= (Az,y)

defines a proper inner product on R™. The associated norm, denoted by ||.]| 4, is
called the energy norm, or simply the A-norm:

[zl = (Az,2)'/? = VaT Az

» Related measure in Machine Learning, Vision, Statistics: the Mahalanobis dis-
tance between two vectors:

da(@,y) = |lz —ylla = V(z —y)"A(z — )

Appropriate distance (measured in # standard deviations) if « is a sample generated
by a Gaussian distribution with covariance matrix A and center y.
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More terminology

» A matrix is Positive

Semi-Definite i (Al o) = D ipralion S I

» Eigenvalues of symmetric positive semi-definite matrices are real nonnegative,
i.e., ...
» ... A can be singular [If not, A is SPD]

» A matrix is said to be Negative Definite if — A is positive definite. Similar definition
for Negative Semi-Definite

» A matrix that is neither positive semi-definite nor negative semi-definite is indefi-
nite

Show that if AT = A and (Az,z) = 0 Vx then A =0

Show: A # 0 is indefinite iff I z,y : (Az,z)(Ay,y) <0
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The LD L™ and Cholesky factorizations

The (standard) LU factorization of an SPD matrix A exists
» Let A= LU and D = diag(U) andset M = (D 'U)T .
Then A =LU = LD(D"'U) = LDMT

» Both L and M are unit lower triangular

» Consider L~'AL™T = DMTL-T

» Matrix on the right is upper triangular. But it is also symmetric. Therefore
MTLT=TandsoM =L
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» Alternative proof: exploit uniqueness of LU factorization without pivoting + sym-
metry: A = LDMT = MDLT — M =L

» The diagonal entries of D are positive [Proof: consider L~AL~T = D]. In the
end:

A = LDLT = GGT where G = LD'/?

» Cholesky factorization is a specialization of the LU factorization for the SPD case.
Several variants exist.
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First algorithm: | row-oriented LDLT

Adapted from Gaussian Elimination. Main observation: The working matrix A(k+1 :
n,k 4+ 1 : n) in standard LU remains symmetric.
— Work only on its upper triangular part & ignore lower part

1. Fork=1:n —1Do:

2 Fori =k + 1 :n Do:

3 piv := a(k,i)/a(k, k)

4. a(t,i:n):=a(i,i:n) —piv *xa(k,i: n)
5 End

6. End

» This will give the U matrix of the LU factorization. Therefore D = diag(U),
LT = D 'U.
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Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes
a(i,:) = a(i,:) — [a(k, ) //a(k, k)] = |a(k,:)/v/a(k k)|

ALGORITHM : 1. OQuter product Cholesky

Fork =1 :n Do:
A(k,k:n) = A(k,k:n)/\/JA(k, k) ;
Fori:=k+1:nDo:
A(iyi:n) = A(i,i:n) — A(k,i) x A(k,i : n);
End
End

S kA Db~

» Result: Upper triangular matrix U such A = UTU.
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Example:

1 —-12
A=]1-1 50
2 09

Is A symmetric positive definite?
What is the LD L7 factorization of A ?
What is the Cholesky factorization of A ?
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Column Cholesky. Let A = GGT with G = lower triangular. Then equate j-th
columns:

a(:vj) = i;:lg(:ak)gT(kaj) —

A(:,§) = > G, k)G(:s k)
= GG CE) + Y Gl R)E( k) —

k=1

GG H)C(d) = ACrd) — 3 G B)G(:s )
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» Assume that first 5 — 1 columns of G already known.

» Compute unscaled column-vector:

o= AGJ) — 3 GG )G k)
k=1

» Notice that v(3) = G(J,5)%

» Compute \/v(j) and scale v to get j-th column of G.
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ALGORITHM : 2. Column Cholesky

1. Fory=1:ndo

2 Fork=1:j5—1do

3 A(j :n,j) = A(J : n,j) — A(j, k) * A(J : n, k)
4. EndDo

5. If A(3,7) < 0 ExitError("Matrix not SPD”)

6. A(3,3) = VA )

7. AG+1:n,j) =A@ +1:n,)/Ax, )

8. EndDo

Try algorithm on:

1 —-12
A=1]-1 5 0
2 09
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