
SYMMETRIC POSITIVE DEFINITE (SPD) MATRICES

SPD LINEAR SYSTEMS

• Symmetric positive definite matrices.

• The LDLT decomposition; The Cholesky factorization
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Positive-Definite Matrices

ä A real matrix is said to be positive definite if

(Au, u) > 0 for all u 6= 0 u ∈ Rn

ä Let A be a real positive definite matrix. Then there is a scalar α > 0 such that

(Au, u) ≥ α‖u‖22.

ä Consider now the case of Symmetric Positive Definite (SPD) matrices.

ä Consequence 1: A is nonsingular

ä Consequence 2: the eigenvalues of A are (real) positive
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6-2A few properties of SPD matrices

ä Diagonal entries of A are positive

ä Recall: the k-th principal submatrix Ak is the k × k submatrix of A with entries
aij, 1 ≤ i, j ≤ k (Matlab: A(1 : k, 1 : k)).

-1 Each Ak is SPD

-2 Consequence: Det(Ak) > 0 for k = 1, · · · , n. In fact A is SPD iff this
condition holds.

-3 If A is SPD then for any n× k matrix X of rank k, the matrix XTAX is SPD.
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ä The mapping : x, y → (x, y)A ≡ (Ax, y)

defines a proper inner product on Rn. The associated norm, denoted by ‖.‖A, is
called the energy norm, or simply the A-norm:

‖x‖A = (Ax, x)1/2 =
√
xTAx

ä Related measure in Machine Learning, Vision, Statistics: the Mahalanobis dis-
tance between two vectors:

dA(x, y) = ‖x− y‖A =
√
(x− y)TA(x− y)

Appropriate distance (measured in # standard deviations) if x is a sample generated
by a Gaussian distribution with covariance matrix A and center y.
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More terminology
ä A matrix is Positive

Semi-Definite if: (Au, u) ≥ 0 for all u ∈ Rn

ä Eigenvalues of symmetric positive semi-definite matrices are real nonnegative,
i.e., ...

ä ... A can be singular [If not, A is SPD]

ä A matrix is said to be Negative Definite if−A is positive definite. Similar definition
for Negative Semi-Definite

ä A matrix that is neither positive semi-definite nor negative semi-definite is indefi-
nite

-4 Show that if AT = A and (Ax, x) = 0 ∀x then A = 0

-5 Show: A 6= 0 is indefinite iff ∃ x, y : (Ax, x)(Ay, y) < 0
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The LDLT and Cholesky factorizations

-6 The (standard) LU factorization of an SPD matrix A exists

ä Let A = LU and D = diag(U) and set M ≡ (D−1U)T .

Then A = LU = LD(D−1U) = LDMT

ä Both L and M are unit lower triangular

ä Consider L−1AL−T = DMTL−T

ä Matrix on the right is upper triangular. But it is also symmetric. Therefore
MTL−T = I and so M = L
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6-6ä Alternative proof: exploit uniqueness of LU factorization without pivoting + sym-
metry: A = LDMT = MDLT →M = L

ä The diagonal entries of D are positive [Proof: consider L−1AL−T = D]. In the
end:

A = LDLT = GGT where G = LD1/2

ä Cholesky factorization is a specialization of the LU factorization for the SPD case.
Several variants exist.
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First algorithm: row-oriented LDLT

Adapted from Gaussian Elimination. Main observation: The working matrixA(k+1 :

n, k + 1 : n) in standard LU remains symmetric.
→Work only on its upper triangular part & ignore lower part

1. For k = 1 : n− 1 Do:
2. For i = k + 1 : n Do:
3. piv := a(k, i)/a(k, k)

4. a(i, i : n) := a(i, i : n)− piv ∗ a(k, i : n)
5. End
6. End

ä This will give the U matrix of the LU factorization. Therefore D = diag(U),
LT = D−1U .
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Row-Cholesky (outer product form)

Scale the rows as the algorithm proceeds. Line 4 becomes

a(i, :) := a(i, :)− [a(k, i)/
√
a(k, k)] ∗

[
a(k, :)/

√
a(k, k)

]

ALGORITHM : 1 Outer product Cholesky

1. For k = 1 : n Do:
2. A(k, k : n) = A(k, k : n)/

√
A(k, k) ;

3. For i := k + 1 : n Do :
4. A(i, i : n) = A(i, i : n)−A(k, i) ∗A(k, i : n);

5. End
6. End

ä Result: Upper triangular matrix U such A = UTU .
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Example:

A =




1 −1 2

−1 5 0

2 0 9




-7 Is A symmetric positive definite?

-8 What is the LDLT factorization of A ?

-9 What is the Cholesky factorization of A ?
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6-10Column Cholesky. Let A = GGT with G = lower triangular. Then equate j-th
columns:

a(:, j) =
∑j
k=1 g(:, k)g

T (k, j)→

A(:, j) =

j∑

k=1

G(j, k)G(:, k)

= G(j, j)G(:, j) +

j−1∑

k=1

G(j, k)G(:, k)→

G(j, j)G(:, j) = A(:, j)−
j−1∑

k=1

G(j, k)G(:, k)
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ä Assume that first j − 1 columns of G already known.

ä Compute unscaled column-vector:

v = A(:, j)−
j−1∑

k=1

G(j, k)G(:, k)

ä Notice that v(j) ≡ G(j, j)2.

ä Compute
√
v(j) and scale v to get j-th column of G.
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ALGORITHM : 2 Column Cholesky

1. For j = 1 : n do
2. For k = 1 : j − 1 do
3. A(j : n, j) = A(j : n, j)−A(j, k) ∗A(j : n, k)

4. EndDo
5. If A(j, j) ≤ 0 ExitError(“Matrix not SPD”)
6. A(j, j) =

√
A(j, j)

7. A(j + 1 : n, j) = A(j + 1 : n, j)/A(j, j)

8. EndDo

-10 Try algorithm on:

A =




1 −1 2

−1 5 0

2 0 9
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