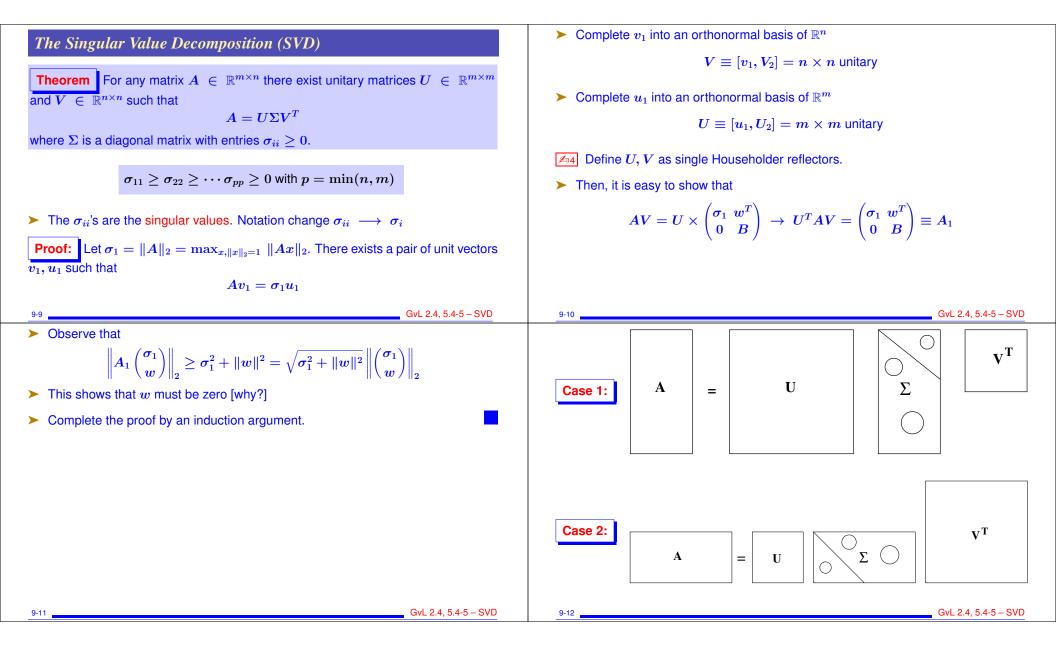
THE URV & SINGULAR VALUE DECOMPOSITIONS	Orthogonal projectors and subspaces
 Orthogonal subspaces Orthogonal projectors, Orthogonal decomposition 	Notation: Given a supspace $\mathcal X$ of $\mathbb R^m$ define: $\mathcal X^\perp = \{y \mid y \perp x, \ \forall \ x \ \in \mathcal X\}$
 The URV decomposition The Singular Value Decomposition Properties of the SVD. Relations to eigenvalue problems 	 ▶ Let Q = [q₁,, q_r] an orthonormal basis of X ✓ I How would you obtain such a basis? ▶ Then define orthogonal projector P = QQ^T Properties (a) P² = P (b) (I - P)² = I - P (c) Ran(P) = X (d) Null(P) = X[⊥] (e) Ran(I - P) = Null(P) = X[⊥]
<i>Proof.</i> (a), (b) are trivial (c): Clearly $Ran(P) = \{x x = QQ^Ty, y \in \mathbb{R}^r\} \subseteq \mathcal{X}$. Any $x \in \mathcal{X}$ is of the form $x = Qy, y \in \mathbb{R}^r$. Take $Px = QQ^T(Qy) = Qy = x$. Since $x = Px$, $x \in Ran(P)$. So $\mathcal{X} \subseteq Ran(P)$. In the end $\mathcal{X} = Ran(P)$.	Note that (b) means that $I - P$ is also a projector g_2 GvL 2.4, 5.4-5 – SVD Result: Any $x \in \mathbb{R}^m$ can be written in a unique way as $x = x_1 + x_2, x_1 \in \mathcal{X}, x_2 \in \mathcal{X}^\perp$
(d): $x \in \mathcal{X}^{\perp} \leftrightarrow (x, y) = 0, \forall y \in \mathcal{X} \leftrightarrow (x, Qz) = 0, \forall z \in \mathbb{R}^{r} \leftrightarrow (Q^{T}x, z) = 0, \forall z \in \mathbb{R}^{r} \leftrightarrow Q^{T}x = 0 \leftrightarrow QQ^{T}x = 0 \leftrightarrow Px = 0.$ (e): Need to show inclusion both ways. • $x \in Null(P) \leftrightarrow Px = 0 \leftrightarrow (I - P)x = x \rightarrow x \in Ran(I - P)$	 Proof: Just set $x_1 = Px$, $x_2 = (I - P)x$ Note: $\mathcal{X} \cap \mathcal{X}^{\perp} = \{0\}$
• $x \in Ran(I - P) \leftrightarrow \exists y \in \mathbb{R}^m x = (I - P)y \rightarrow Px = P(I - P)y = 0 \rightarrow x \in Null(P)$	 Therefore: $\mathbb{R}^m = \mathcal{X} \oplus \mathcal{X}^\perp$ Called the <i>Orthogonal Decomposition</i>
9-3 GvL 2.4, 5.4-5 – SVD	9-4 GvL 2.4, 5.4-5 – SVD

Orthogonal decomposition	Four fundamental supspaces - URV decomposition
► In other words $\mathbb{R}^m = P\mathbb{R}^m \oplus (I - P)\mathbb{R}^m$ or: $\mathbb{R}^m = Ran(P) \oplus Ran(I - P)$ or: $\mathbb{R}^m = Ran(P) \oplus Null(P)$ or: $\mathbb{R}^m = Ran(P) \oplus Ran(P)^{\perp}$	Let $A \in \mathbb{R}^{m imes n}$ and consider $\operatorname{Ran}(A)^{\perp}$
	Property 1: $\operatorname{Ran}(A)^{\perp} = Null(A^T)$
Can complete basis $\{q_1, \cdots, q_r\}$ into orthonormal basis of $\mathbb{R}^m, q_{r+1}, \cdots, q_m$	Proof: $x \in \operatorname{Ran}(A)^{\perp}$ iff $(Ay, x) = 0$ for all y ; iff $(y, A^Tx) = 0$ for all y
▶ $\{q_{r+1}, \cdots, q_m\}$ = basis of \mathcal{X}^{\perp} . → $dim(\mathcal{X}^{\perp}) = m - r$.	Property 2: $\operatorname{Ran}(A^T) = Null(A)^{\perp}$
	► Take $\mathcal{X} = \operatorname{Ran}(A)$ in orthogonal decomoposition. ► Result:
	$\mathbb{R}^{m} = Ran(A) \oplus Null(A^{T})$ $\mathbb{R}^{n} = Ran(A^{T}) \oplus Null(A)$ $4 \text{ fundamental subspaces}$ $Ran(A) Null(A^{T})$ $Ran(A^{T}) Null(A)$
9-5 GvL 2.4, 5.4-5 – SVD	9-6 GvL 2.4, 5.4-5 – SVD
Express the above with bases for \mathbb{R}^{m} : $\begin{bmatrix} u_{1}, u_{2}, \cdots, u_{r}, u_{r+1}, u_{r+2}, \cdots, u_{m} \\ Ran(A) \end{bmatrix}$ and for \mathbb{R}^{n} $\begin{bmatrix} v_{1}, v_{2}, \cdots, v_{r}, v_{r+1}, v_{r+2}, \cdots, v_{n} \\ Ran(A^{T}) \end{bmatrix}$ Observe $u_{i}^{T}Av_{j} = 0$ for $i > r$ or $j > r$. Therefore $U^{T}AV = R = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}_{m \times n} C \in \mathbb{R}^{r \times r} \longrightarrow$ $A = URV^{T}$	 Far from unique. ✓a2 Show how you can get a decomposition in which <i>C</i> is lower (or upper) triangular, from the above factorization. Can select decomposition so that <i>R</i> is upper triangular → URV decomposition. Can select decomposition so that <i>R</i> is lower triangular → ULV decomposition. SVD = special case of URV where <i>R</i> = diagonal ✓a3 How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]
 General class of URV decompositions 	
9-7 GvL 2.4, 5.4-5 – SVD	9-8 GvL 2.4, 5.4-5 – SVD



The "thin" SVD

Consider the Case-1. It can be rewritten as

$$A = [U_1 U_2] egin{pmatrix} \Sigma_1 \ 0 \end{pmatrix} \, V^T$$

Which gives:

9-13

 $A = U_1 \Sigma_1 \, V^T$

where U_1 is m imes n (same shape as A), and Σ_1 and V are n imes n

Referred to as the "thin" SVD. Important in practice.

Most How can you obtain the thin SVD from the QR factorization of A and the SVD of an $n \times n$ matrix?

Properties of the SVD (continued)

• The matrix A admits the SVD expansion:

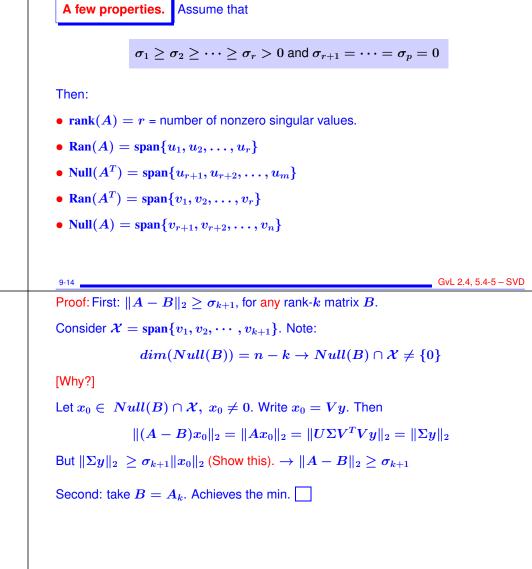
 $A = \sum_{i=1}^r \sigma_i u_i v_i^T$

GvL 2.4, 5.4-5 - SVD

9-16

- $\|A\|_2 = \sigma_1$ = largest singular value
- $\|A\|_F = \left(\sum_{i=1}^r \sigma_i^2\right)^{1/2}$
- When A is an n imes n nonsingular matrix then $\|A^{-1}\|_2 = 1/\sigma_n$

Theorem [Eckart-Young-Mirsky] Let $k \le r$ and $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ then $\min_{rank(B)=k} ||A - B||_2 = ||A - A_k||_2 = \sigma_{k+1}$ 9-15 GvL 2.4, 5.4-5 – SVD



GvL 2.4, 5.4-5 - SVD

Right and Left Singular vectors:		Define the $r \times r$ matrix
	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\Sigma_1 = ext{diag}(\sigma_1, \dots, \sigma_r)$
$v_i s = \text{right singular vectors;}$ $u_i s = \text{left singular vectors.}$	Let $A \in \mathbb{R}^{m \times n}$ and consider $A^T A \ (\in \mathbb{R}^{n \times n})$:	
\blacktriangleright Consequence $A^TAv_i = \sigma_i^2 v_i$ and $AA^Tu_i = \sigma_i^2 u_i$		$(\Sigma_1^T, \Sigma_1, \Sigma_2^T, \Sigma_2, \Sigma_1^T, \Sigma_2, \Sigma_1^T, \Sigma_2, \Sigma_2^T, \Sigma_2, \Sigma_2, \Sigma_2, \Sigma_2, \Sigma_2, \Sigma_2, \Sigma_2, \Sigma_2$
► Right singular vectors $(v_i$'s) are eigenvectors of $A^T A$		$A^TA = V\Sigma^T\Sigma V^T \ o \ A^TA = V \left(egin{matrix} \Sigma_1^2 & 0 \ 0 & 0 \ \end{pmatrix} V^T ight)$
> Left singular vectors $(u_i$'s) are eigenvectors of AA^T		$n \stackrel{\sim}{\times} n$
Possible to get the SVD from eigenvectors of AA ^T and due to non-uniqueness of the SVD	d $A^T A$ – but: difficulties	> This gives the spectral decomposition of $A^T A$.
9-17	GvL 2.4, 5.4-5 – SVD	9-18 GvL 2.4, 5.4-5 – SVD
Similarly, U gives the eigenvectors of AA^T .		
$AA^T = oldsymbol{U} \underbrace{egin{pmatrix} \Sigma_1^2 & 0 \ 0 & 0 \ m imes m \end{pmatrix}}_{m imes m} oldsymbol{U}^T$		
Important:		
$A^TA = VD_1V^T$ and $AA^T = UD_2U^T$ give the SVD fact	ors $m{U},m{V}$ up to signs!	
9-19	GvL 2.4, 5.4-5 – SVD	
9-19	GVL 2.4, 3.4-3 - 3VD	