THE SINGULAR VALUE DECOMPOSITION (Cont.)

e The Pseudo-inverse
e Use of SVD for least-squares problems
e Application to regularization

e Numerical rank

Pseudo-inverse of an arbitrary matrix

» Let A = UXVT which we rewrite as
>, 0\ (VT
A= (Ul UQ) (01 0) <V2T> = Uiz V'

r

1
AT =WE'UT =) —vul
=197

» Then the pseudo inverse of A is:

» The pseudo-inverse of A is the mapping from a vector b to the (unique) Minumum
Norm solution of the LS problem: min,, || Az — b||3 — (to be shown)

> In the full-rank overdetermined case, the normal equations yield x = (ATA)"*AT b
N~
AT
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Least-squares problem via the SVD

Problem: min, ||b — Azx||, in general case.
» We want to:
e Find *all* possible least-squares solutions.
e Also find the one with min. 2-norm.

» SVD of A will play instrumental role in expressing solution

T i
A= (Ul U2) <2(J)1 g) (%T) = Z:la'i’viu;’r

» Write SVD of A as:
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1) Express z in V basis : x = Vy = [V4, V3] (Z;)
2

2) Then left multiply by U7 to get

3,0 UTb
_BlZ — 1 Y\ 1
Aol H(O 0) <y2> <U2Tb>

3) Find all possible solutions in terms of y = [y1; y2]

2

2

What are all least-squares solutions to the above system? Among these which
one has minimum norm?
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Answer: From above, must have y; = El_lUfb and y, = anything (free).

Recall that: x = [V, V3] <zl> = Viy1 + Va2
2

= ViZ['UTb + Vay,

=|ATb + Vays
> Note: AT € Ran(AT) and Voy, € Null(A).

» Therefore: least-squares solutions are all of the form:

A’ +w where w € Null(A).

» Smallest norm when y» = 0, i.e., when w = 0.
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» Minimum norm solution to min, || Az — b||3 satisfies X1y, = U{'b, y» = 0.
> ltis: zrs = ViZ'UTb = Afb

If A € R™*™ what are the dimensions of AT?, ATA?, AAT?
Show that AT A is an orthogonal projector. What are its range and null-space?
Same questions for AAT.
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Moore-Penrose Inverse

The pseudo-inverse of A is given by

s7to " vut
if = 1 T _ =
A V(O O>U D —

=1 gi

Moore-Penrose conditions:

The pseudo inverse X of a matrix is uniquely determined by these four conditions:

(1) AXA=A
3) (AX)H = AX

2) XAX =X
4) (XA)H=XxA

» In the full-rank overdetermined case, AT = (ATA)~1AT
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Least-squares problems and the SVD

» The SVD can give much information on solutions of overdetermined and underde-
termined linear systems.

Let A be an m x n matrixand A = UXV7T its SVD with 7 = rank(A), V =
[V1y...,0,] U = [t1,...,Uy]. Then
" ul'b

Tis =)

=1

v;
g;

minimizes ||b— Az||» and has the smallest 2-norm among all possible minimizers.
In addition,

prs = ||b — Azxrs|l2 = ||z||2 with 2 = [wpiq,. .. ,um]Tb
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Least-squares problems and pseudo-inverses

» A restatement of the first part of the previous result:

Consider the general linear least-squares problem
min ||z]l2, S ={z € B"|||b— Az|]2 min}.
€T

This problem always has a unique solution given by

Consider the matrix: A

I
~—

10 2 0
00 —21

e Compute the thin SVD of A

e Find the matrix B of rank 1 which is the closest to the above matrix in the 2-norm
sense.

e What is the pseudo-inverse of A?

x=A'b
e What is the pseudo-inverse of B?
e Find the vector x of smallest norm which minimizes ||b — Az||» with b = (1,1)T
e Find the vector z of smallest norm which minimizes ||b — Bz||» with b = (1,1)T
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Ill-conditioned systems and the SVD

» Llet Abem x mand A = UXVT its SVD

» Solution of Az = bisx = A~'b =" uib ;

i=1 "o,

» When A is very ill-conditioned, it has many small singular values. The division by
these small o;’s will amplify any noise in the data. If b = b 4 € then

P iufb n " ule
= v; E v;

i1 i i=1 7t

Error

» Result: solution could be completely meaningless.
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Remedy: | SVD regularization

Truncate the SVD by only keeping the os that are > 7, where 7 is a threshold
» Gives the Truncated SVD solution (TSVD solution:)

usz
LTSVD = E
oi>T i

(%

» Many applications [e.g., Image and signal processing,..]
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Numerical rank and the SVD

» Assuming the original matrix A is exactly of rank k the computed SVD of A will
be the SVD of a nearby matrix A + E — Can show: |6; — 0i| < a oju

» Result: zero singular values will yield small computed singular values and r larger
sing. values.

Pseudo inverses of full-rank matrices

Case1: m > n | Then AT = (ATA)1AT

» ThinSVD is A = U121V1T and Vi, 3, are n X n. Then:
(ATA)AT = (MBI Vs OT

. — 2—2 T » T
» Reverse problem: numerical rank — The e-rank of A : Vix, 1V1TV1 Uy
= Vis U
re = min{rank(B) : B € R™*",||A — B||» < €}, = Al
Show that r. equals the number sing. values that are >e 0 1
. . . 1 2 |,
Show: 7. equals the number of columns of A that are linearly independent for Example: |Pseudo-inverse of o _1 is?
any perturbation of A with norm < e. 0 1
» Practical problem : How to set €?
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Case 2: m < n |Then AT = AT(AAT)"!

» Thin SVDis A = U; %, VL. Now Uy, 34 are m X m and:

AT(AAT) = iz Ul o 2?Pul
=wsUulu,=2ut
=W, 3Uf
=W 'uy
= At

12 -11

Example: |Pseudo-inverse of (0 12 0) is?

» Mnemonic: The pseudo inverse of A is AT completed by the inverse of the smaller
of (ATA)~! or (AAT)~! where it fits (i.e., left or right)
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