A few applications of the SVD

Many methods require to approximate the original data (matrix) by a low rank
matrix before attempting to solve the original problem

» Regularization methods require the solution of a least-squares linear system Ax = b
approximately in the dominant singular space of A

» The Latent Semantic Indexing (LSI) method in information retrieval, performs the
“query” in the dominant singular space of A

» Methods utilizing Principal Component Analysis, e.g. Face Recognition.




Commonality: Approximate A (or AT) by a lower rank approximation A;, (using
dominant singular space) before solving original problem.

» This approximation captures the main features of the data while getting rid of noise
and redundancy

Note: Common misconception: ‘we need to reduce dimension in order to reduce
computational cost’. In reality: using less information often yields better
results. This is the problem of overfitting.

» Good illustration: Information Retrieval (IR)




Information Retrieval: Vector Space Model

» Given: a collection of documents (columns of a matrix A) and a query vector gq.
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» Collection represented by an m X n term by document matrix with |a;; = L;;G;IN;

» Queries (‘pseudo-documents’) g are represented similarly to a column




Vector Space Model - continued

» Problem: find a column of A that best matches q

» Similarity metric: angle between the column and q - Use cosines:

Ic’q]
cll2]lql|2

» To rank all documents we need to compute

s = Alqg

» s = similarity vector.

» Literal matching — not very effective.
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Use of the SVD

» Many problems with literal matching: polysemy, synonymy, ...
» Need to extract intrinsic information — or underlying “semantic” information —

» Solution (LSI): replace matrix A by a low rank approximation using the Singular
Value Decomposition (SVD)

A=UxvT A = UkEkaT

» U, : term space, V},: document space.

» Refer to this as Truncated SVD (TSVD) approach




New similarity vector:

s, = Ajq = Vi3 Ul'q

Issues:
» Problem 1: How to select k?
» Problem 2: computational cost (memory + computation)
» Problem 3: updates [e.g. google data changes all the time]

» Not practical for very large sets
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LSI : an example

5% D1 : INFANT & TODLER first aid

%% D2 : BABIES & CHILDREN’s room for your HOME
% D3 : CHILD SAFETY at HOME

% D4 : Your BABY’s HEALTH and SAFETY

5% : From INFANT to TODDLER

%% D5 : BABY PROOFING basics

%% D6 : Your GUIDE to easy rust PROOFING

%% D7 : Beanie BABIES collector’s GUIDE

%% D8 : SAFETY GUIDE for CHILD PROOFING your HOME
%% TERMS: 1:BABY 2:CHILD 3:GUIDE 4:HEALTH 5:HOME
5% ©: INFANT 7:PROOFING 8:SAFETY 9:TODDLER

Source: Berry and Browne, SIAM., "99

» Number of documents: 8

» Number of terms: 9



dl d2 d3 d4 d5 d6 d7 d8

1
1 1

» Raw matrix (before scaling): A=

1 1

1 bab

1 |cht

1 1 1 |guz
hea
1 lhom
inf
1 1 |pro

tod

#1| Get the anwser to the query Child Safety, SO

g=1[010000010]

using cosines and then using LS| with & = 3.
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Dimension reduction

Dimensionality Reduction (DR) techniques pervasive to many applications

» Often main goal of dimension reduction is not to reduce computational cost. In-
stead:

* Dimension reduction used to reduce noise and redundancy in data

» Dimension reduction used to discover patterns (e.g., supervised learning)

» Techniques depend on desirable features or application: Preserve angles? Pre-
serve distances? Maximize variance? ..




The problem

» Given d < m find a mapping
d:x cR™ — y €R? )j_'
» Mapping may be explicit (e.g., y = V1x)

» Or implicit (nonlinear) /. Y

. -di ' i dxn
Practically:I Ilggislow dimensional representation Y € R¢*"™of X €&

» Two classes of methods: (1) projection techniques and (2) nonlinear implicit meth-
ods.
10 e —————————————————— (articles) — SVDapp




Example: Digit images (a sample of 30)
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A few 2-D ’reductions’:

PCA — digits : 0 — 4

LLE - digits : 0 — 4

ONPP - digits : 0 —— 4
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Projection-based Dimensionality Reduction

Given: a data set X = [x1,®3,...,x,], and d the dimension of the desired
reduced space Y.

Want: a linear transformation from X toY

- X X € RMXn

m V = Rde

al| vT Y d Y =V'X
n — Y & Ran

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)

Problem: Find the best such mapping (optimization) given that the y;’s must satisfy

certain constraints




Principal Component Analysis (PCA)

» PCA: find V (orthogonal) so that projected data Y = VTX has maximum

variance

» Maximize over all orthogonal m X d matrices V.

2.

)

1
yi_ﬁ;yj

Where: X = [Z1,- -+ , T, With Z; = z; — p, p = mean.

Solution: I V' = { dominant eigenvectors } of covariance matrix

> i.e., Optimal V' = Set of left singular vectors of X associated with d largest singular

values.
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“32| Show that X = X (I — %eeT) (here e = vector of all ones). What does the
projector (I — tee™) do?

n

#3| Show that solution V' also minimizes ‘reconstruction error’ ..

D & —vVviz|* =3 |z - Vil

4] .. and that it also maximizes 3, - ||y — y;||?
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Matrix Completion Problem

Consider a table of movie ratings. You want to predict missing ratings by assuming
commonality (low rank matrix).

given data predictions

movie | Paul | Jane  Ann | Paul |Jane | Ann
Title-1 | -1 3/ -1|-1.2 1.7/-0.7
Title-2 4 X 3| 28| -1.2| 2.5
Title-3| -3 1| —4)|-2.7| 1.0 -2.5
Title-4 X —-1] -1]-0.5/-0.3/-0.6
Title-5 3 -2 1] 1.8/ -1.4 14
Title-6| -2 3/ x|-16] 1.8/ -1.2
A X

» Minimize |[(X — A)mask|l3 + ]| X ||«
“minimize sum-of-squares of deviations from known ratings

plus sum of singular values of solution (to reduce the rank).”




