ALGORITHMS FOR EIGENVALUE PROBLEMS

» The Power method

* The QR algorithm

« Practical QR algorithms: use of Hessenberg form and shifts
* The symmetric QR method

* The Jacobi method

Basic algorithm: The power method

> Basic idea is to generate the sequence of vectors A*vy where vy # 0 — then
normalize.

» Most commonly used normalization: ensure that the largest component of the
approximation is equal to one.

The Power Method
1. Choose a nonzero initial vector v(©).
2. Fork =1,2,...,until convergence, Do:
3. o = argmax,_,, | (AoD),
4. k) — L Ap(k—1)
(073
5. EndDo

» argmaxi—1,.n|Xi| = the component x; with largest modulus
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k,,. — Zko,.
Convergence of the power method > Note that Afu; = Aju;
1 n
(k) — = Ao
THEOREM Assume there is one eigenvalue Ay of A, s.t. [A| > |\j], for j # 1, v scaling x ; i Titi
and that \; is semi-simple. Then either the initial vector v(®) has no component n
in Null(A — X I) or v® converges to an eigenvector associated with A; and = oaling X [A'f’hm + ) Afyiu
o — Al- g i=2
AN

Proof in the diagonalizable case. - scaling’ X [ul + ; <,\71) iu’
» v®) is = vector A*v(®) normalized by a certain scalar é;, in such a way that its > Second term inside bracket converges to zero. QED
largest component is 1. o

» Proof suggests that the convergence factor is given by

n
i 0

> Decompose initial vector v(® in the v® =3y op — | Az|
eigenbasis as: = | A1l

where A, is the second largest eigenvalue in modulus.
» Each wu; is an eigenvector associated with \;.
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Consider a ‘Markov Chain’ matrix of size n = 55. Dominant eigen-

values are A = 1 and A = —1 » the power method applied directly to A fails.
(Why?)

» We can consider instead the matrix I + A The eigenvalue A = 1 is then trans-
formed into the (only) dominant eigenvalue A = 2

The Shifted Power Method

» In previous example shifted A into B = A + I before applying power method.
We could also iterate with B(o) = A + oI for any positive o

With o = 0.1 we get the following improvement.

Iteration | Norm of diff. | Res. norm | Eigenvalue lteration | Norm of diff. | Res. Norm | Eigenvalue
20/ 0.639D-010.276D-011.02591636 20| 0.273D-01| 0.794D-02 | 1.00524001
401 0.129D-010.513D-02/1.00680780 40| 0.729D-03| 0.210D-03|1.00016755
60| 0.192D-020.808D-03 | 1.00102145 60| 0.183D-04| 0.509D-05 | 1.00000446
80| 0.280D-030.121D-031.00014720 80 0.437D-06 | 0.118D-06 | 1.00000011
100| 0.400D-04|0.174D-04  1.00002078 88| 0971D-07| 0.261D-07 | 1.00000002
120| 0.562D-05|0.247D-05  1.00000289
140| 0.781D-06|0.344D-06  1.00000040
161| 0.973D-07|0.430D-07  1.00000005
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» Question: What is the best shift-of-origin o to use?

» Easy to answer the question when all eigenvalues are real.

Assume all eigenvalues are real and labeled decreasingly:
AL> A2 A2 2 Ay,

Then: If we shift Ato A — oI:

The shift o that yields the best convergence factor is:

}\2+An

Oopt =
2

Plot a typical convergence factor ¢(o) as a function of o. Determine the
minimum value and prove the above result.
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Inverse Iteration

Observation: The eigenvectors of A and A~! are identical.

» |dea: use the power method on A1

» Will compute the eigenvalues closest to zero.

» Shift-and-invert Use power method on [(A — oI)7!|

» will compute eigenvalues closest to o.

vl Av
vTv

» Rayleigh-Quotient lteration: use o =
(best approximation to A given v).

» Advantages: fast convergence in general.

» Drawbacks: need to factor A (or A — oI) into LU.
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The QR algorithm

» The most common method for solving small (dense) eigenvalue problems. The
basic algorithm:

QR algorithm (basic)

1. Until Convergence Do:

2. Compute the QR factorization A = QR
3. Set A := RQ

4. EndDo

» “Until Convergence” means “Until A becomes close enough to an upper triangular
matrix”

> Note: A, = RQ = Q7 (QR)Q = Q7 AQ

» A, IS Unitarily similar to A — Spectrum does not change
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» Convergence analysis complicated — but insight: we are implicitly doing a QR
factorization of A*:

QR-Factorize: Multiply backward:
Step 1 Ay = QoRy A = RyQo
Step 2 Al = Q1R Ax = R1Q:
Step 3: Ay = Q2R2 Az = R2Q2 Then:
[QoQ1Q:][R:R1Ry] = QoQ1A2R 1Ry
= Qo(Q1R1)(Q:1R1)Ry
= QoA ARy, Ay = RoQo —
= R R Ry) = A®
(QOA 0) (Qtj4 0) (QOA 0)

> [QoQ1Q:][R2 R, Ry == QR factorization of A3
» This helps analyze the algorithm (details skipped)
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» Above basic algorithm is never used as is in practice. Two variations:
(1) Use shift of origin and

(2) Start by transforming A into an Hessenberg matrix
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Practical QR algorithms: Shifts of origin

Observation: (from theory): Last row converges fastest. Convergence is dictated by

where we assume:  |Aq| > [A2| > - > [Auo1] > | Al

| » For simplicity we will consider the situation when all eigenvalues are real.]

» As k — oo the last row (except a;’“g) converges to zero quickly ..

> .. and a{¥) converges to eigenvalue of smallest magnitude.
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AR —

Qe & & & 0

a a a a a
> Idea: Apply QR algorithm to A®) — uI with p = a{F). Note: eigenvalues of

A®) — T are shifted by p (eigenvectors unchanged). — Shift matrix by + I after
iteration.
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QR algorithm with shifts

1. Until row a;,, 1 < 7 < n converges to zero DO:
2 Obtain next shift (e.9. p = any)

3. A—ul =QR

5 Set A := RQ + uI

6. EndDo

» Convergence (of last row) is cubic at the limit! [for symmetric case]
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» Result of algorithm:

AR —

0 0 0 0 0 N,

> Next step: deflate, i.e., apply above algorithm to (n — 1) x (n — 1) upper block.
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Practical algorithm: Use the Hessenberg Form

Recall: Upper Hessenberg matrix is such that

aij=0f0|"l:>j+1

Observation: QR algorithm preserves Hessenberg form (and tridiagonal symmet-
ric form). Results in substantial savings: O (n?) flops per step instead of O(n?)

Transformation to Hessenberg form * ok x  *x K %
* * * * * *
» Want HiAH] = H;AH; to have the 0 * *x *x * *
form shown on the right 0 * *x * * x
0 * * *x *x %
» Consider the first step only on a 6 X 6 matrix 0 * *x * * %
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» Choose aw in H; = I —2ww” to make the first column have zeros from position
3ton. Sow; = 0.

> Apply to left: B = H1 A

» Apply to right: A; = BH;.

Main observation: the Householder matrix H; which transforms the column A(2 :
n,1) into e; works only on rows 2 to n. When applying the transpose Hj to the

right of B = H; A, we observe that only columns 2 to n will be altered. So the
first column will retain the desired pattern (zeros below row 2).

» Algorithm continues the same way for columns 2, ....n — 2.

OR algorithm for Hessenberg matrices

» Need the “Implicit Q theorem”

Suppose that QT AQ is an unreduced upper Hessenberg matrix. Then columns 2
to n of @Q are determined uniquely (up to signs) by the first column of Q.

» In other words if VTAV = G and QTAQ = H are both Hessenberg and
V(1) =Q(:,1) then V(:,4) = £Q(:,1) fori = 2 : n.

Implication: | To compute A;11 = Q}"AQi we can:

» Compute 1st column of Q; [== scalar x A(:, 1)]

» Choose other columns so Q; = unitary, and A;,; = Hessenberg.
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2. Choose G> = G(2, 3, 05) so that (GEA1)31 = 0
» W’Il do this with Givens rotations: : : : : :
) A=10 *x x x x ook ok k%
0 0 0 =x =x > Ay = G§A1G2 =10 * % x %
0 + =% x =%
1. Choose G1 = G(1,2,6,) so that (GT Ag)21 = 0 0 0 0 % =%
% k% % 3. Choose G3 = G(3,4, 65) so that (GFA3)s2 =0
*  ox % % %
> A = GfAGl =4+ * *x *x x * % % x %
0 0 *x *x % * % * *x ok
0 0 0 =% = >» Az = G?,:AzG?, =10 * =x x %
0 O * * %
0 0 4+ *x =
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4. Choose G4 = G(4,5, 0,) so that (GT A3)s3 = 0

£ k x x x
* * E3 %k %k
) 2 A4 = GZA3G4 = 0 * * ES ES

0 0 =x x =%
0 0 0 =x =%

» Process known as “Bulge chasing”

» Similar idea for the symmetric (tridiagonal) case
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The QR algorithm for symmetric matrices

» Most common approach used : reduce to tridiagonal form and apply the QR
algorithm with shifts.

» Householder transformation to Hessenberg form yields a tridiagonal matrix be-
cause
HAHT = A,

is symmetric and also of Hessenberg form » it is tridiagonal symmetric.

Tridiagonal form preserved by QR similarity transformation
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Practical method

» How to implement the QR algorithm with shifts?

» |t is best to use Givens rotations — can do a shifted QR step without explicitly
shifting the matrix..

» Two most popular shifts:

8 = @nn and s = smalleste.v. of A(n —1:n,n —1:n)
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The Jacobi algorithm for symmetric matrices

» Main idea: Rotation matrices of the form

1 ... 0 0 0

0 D) C DI s Y 0 p
J(p,q,0) = | : : : : : :

0 “ee —8 cee I's] cee 0 q

o ... 0 1

¢ = cos 0 and s = sin @ are so that J(p, q,0)T AJ (p, q, 0) has a zero in position
(p, g) (and also (g, p))

» Frobenius norm of matrix is preserved — but diagonal elements become larger »
convergence to a diagonal.
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> Let B = JTAJ (where J = J, 4.0).

» Look at 2 x 2 matrix B([p, q], [P, ¢g]) (matlab notation)

» Keep in mind that a,q = agp and b,y = by,

bpp bpq
bqp bqq

>_

[

c —s)\ [app apq c s _
s ¢ Qgp Qgq) \—S C

Czapp + 32‘11111 — 2scapg ‘ (02 - 52)“1)«1 — sc(aqq — app)

2 2
* ‘ CQgq + $7ap, + 2sc apq

-5 agy —
_ Qg — %pp =,
2sc 2ayq
» Lettingt = s/c (= tan0) — quad. equation
t24+21t—1=0
— _ 2 1
>»t=—TEV1+T =T
» Select sign to get a smaller t so 6 < = /4.
» Th 1 t
en . Cc = : S =%
NG

2 2
> Want: (c¢® — s%)apg — sc(agg — ap) =0 . .
P “ e » Implemented in matlab script jacrot (A, p, q) —
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. . . > || Aol|r will decrease from one step to the next.
q = A ‘with its diagonal entries
» Define: Ap = A — Diag(A) 9

replaced by zeros’

» Observations: (1) Unitary transformations preserve ||.||r- (2) Only changes are in
rows and columns p and q.

> Let B=JTAJ
(where J = J,,4.6). Then:

2 2 2 _ p2 2 2 _ 12 2
app+aqq+2apq_bpp+bqq+2bpq_bpp+bqq

because b,, = 0. Then, a little calculation leads to:

14-27

IBollz = I1BI% — D_b% = IlAll% — > _ b}

= ||A||fw - Za?i =+ Zai’ - Z b?i
HAO”%“ + (aZp + a’zq - bflp - b¢21q)

— 2 2
- ||A0||F - 2apq
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Let ||Ao||1 = maxX;x; |aij|. Show that

[Aollr < y/n(n —1)||Aollr

Use this to show convergence in the case when largest entry is zeroed at each

step.
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