LARGE SPARSE EIGENVALUE PROBLEMS

e Projection methods
e The subspace iteration
e Krylov subspace methods: Arnoldi and Lanczos

e Golub-Kahan-Lanczos bidiagonalization



General Tools for Solving Large Eigen-Problems

» Projection techniques — Arnoldi, Lanczos, Subspace Iteration;
» Preconditioninings: shift-and-invert, Polynomials, ...
» Deflation and restarting techniques

» Computational codes often combine these three ingredients
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A few popular solution Methods

e Subspace lteration [Now less popular — sometimes used for validation]

e Arnoldi’'s method (or Lanczos) with polynomial acceleration

e Shift-and-invert and other preconditioners. [Use Arnoldi or Lanczos for (A —
ol)~1]

e Davidson’s method and variants, Jacobi-Davidson
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Projection Methods for Eigenvalue Problems

Projection method onto K orthogonal to L
» Given: Two subspaces K and L of same dimension.

» Approximate eigenpairs \, @, obtained by solving:

Find: A € C,&4 € K suchthatAl — A)a L L

» Two types of methods:
Orthogonal projection methods: Situation when L = K.
Oblique projection methods: When L # K.

» First situation leads to Rayleigh-Ritz procedure




Rayleigh-Ritz projection

Given: subspace X known to contain good approximations to eigenvectors of A.
Question: How to extract ‘best’ approximations to eigenvalues/ eigenvectors from
this subspace?

Answer: IOrthogonaI projection method

» Let Q = [q1,- - . 5 @m] = Orthonormal basis of X

> Orthogonal projection method onto X yields: Q% (A —AI)d =0 —

> | QHAQy = Ay where @ = Qy | Known as Rayleigh Ritz process




Procedure:

1. Obtain an orthonormal basis @ of X

2. Compute C = Q7 AQ (an m X m matrix)

3. Obtain Schur factorization of C, C = Y RY 2
4. Compute U = QY

Property: it X is (exactly) invariant, then procedure will yield exact eigenvalues
and eigenvectors.

Proof: Since X is invariant, (A — AI)u = Qz for a certain z. Q" Qz = 0 implies
z = 0 and therefore (A — AI')u = 0.

» Can use this procedure in conjunction with the subspace obtained from subspace
iteration algorithm




Subspace Iteration

Original idea: projection technique onto a subspace of the formY = A*X

Practically: A* replaced by suitable polynomial

Advantages: e Easy to implement (in symmetric case);
e Easy to analyze;

Disadvantage: Slow.

» Often used with polynomial acceleration: A*X replaced by Cj(A)X. Typically
C}. = Chebyshev polynomial.




Algorithm: Subspace lteration with Projection

1. Start: Choose an initial system of vectors X = [xg,..., ;] and an initial
polynomial C.

2. lterate: Until convergence do:
a) Compute Z = C,(A)X. [Simplestcase: Z = AX ]
b) Orthonormalize Z: [Z, Rz] = qr(Z,0)
c) Compute B = ZHAZ
d) Compute the Schur factorization B = Y RgY ¥ of B
e) Compute X := ZY.

)

(f) Test for convergence. If satisfied stop. Else select a new polynomial C;, and
continue.




THEOREM: Let Sy = span{xi,x2,...,x,} and assume that Sy is such that the
vectors { Px;}i—1....m are linearly independent where P is the spectral projector
associated with \{,...,\,,. Let Py the orthogonal projector onto the subspace
S = span{Xy}. Then for each eigenvector u; of A, ¢ = 1,...,m, there exists
a unique vector s; in the subspace Sy such that Ps; = wu;. Moreover, the following
inequality is satisfied

>\m—|—1

k
1T = Poyuills < Jlus — sills (\ +ek) , 1)

1

where €, tends to zero as k tends to infinity.




KRYLOV SUBSPACE METHODS I



Krylov subspace methods

Principle: Projection methods on Krylov subspaces:

K,,(A,vy) = span{vy, Avy,--- , A™ 1o}

e The most important class of projection methods [for linear systems and for eigen-
value problems]

e Variants depend on the subspace L
» Let u = deg. of minimal polynom. of v;. Then:

e K., = {p(A)vy|p = polynomial of degree < m — 1}
o K,, = K, forallm > u. Moreover, K, is invariant under A.

e dim(K,,) = miff u > m.




Arnoldi’s algorithm

» (Goal: to compute an orthogonal basis of K,,,.

» Input: Initial vector vy, with ||vy||]2 = 1 and m.

ALGORITHM : 1. Arnoldi’s procedure

Forg =1,...,m do
Compute w := Awv;

. . hi ;e — 7
w = w — hi,jvi
hji1, = ||w]|2;
Vjt1 = w/hji1;
End

» Based on Gram-Schmidt procedure
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Result of Arnoldi’s algorithm
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ResuHs:I

1. Voo = [v1, V2, ..., vy, Orthonormal basis of K,,.
2. AV, = m—l—lﬁm = VinHy, + hm—|—1,mfvm—l—1e£z

T o e
3. V. AV,, = H,, = H,,— last row.
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Application to eigenvalue problems

» Write approximate eigenvector as u = V,,,y
» Galerkin condition:

(A-XDV,y L K, — VHA-X)V,y=0

» Approximate eigenvalues are eigenvalues of H,,
Hmyj — Ajyj
» Associated approximate eigenvectors are
uj = Viny;

» Typically a few of the outermost eigenvalues will converge first.




Hermitian case: The Lanczos Algorithm

» The Hessenberg matrix becomes tridiagonal :

A=A" and VYAV, =H, — H,=H:2

» Denote H,, by T,, and H,, by T,,. We can write

B2 az (O3
T, — B3 a3 B4

(v B )

\ B )
» Relation AV,,, = V1T
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» Consequence: three term recurrence
Bi+1Vj+1 = Av; — ajvj — Bivjy

ALGORITHM : 2. Lanczos

1. Choose an initial vy with ||vy||2 = 1,
Set3;1 =0,v9=0

2. Fory =1,2,...,m Do:

3 Wwj; = A’Uj — ,ijvj_l

4. aj = (wj, v;)

5. Wj 1= Wj; — Qv

6. /6j—|-1 = ||w3||2 /f,@j_|_1 = 0 then SZ‘Op

7. Yt i= wji/ B

8. EndDo

Hermitian matrix + Arnoldi — Hermitian Lanczos




» In theory v;’s defined by 3-term recurrence are orthogonal.

» However: in practice severe loss of orthogonality;

Observation [Paige, 1981]: Loss of orthogonality starts suddenly, when the first
eigenpair has converged. It is a sign of loss of linear independence of the computed
eigenvectors. When orthogonality is lost, then several the copies of the same
eigenvalue start appearing.




Reorthogonalization

>

>
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Full reorthogonalization — reorthogonalize v;; against all previous v;’s
every time.

Partial reorthogonalization — reorthogonalize v;,; against all previous
v;'s only when needed [Parlett & Simon]

Selective reorthogonalization — reorthogonalize v;4; against computed
eigenvectors [Parlett & Scott]

No reorthogonalization — Do not reorthogonalize - but take measures to
deal with 'spurious’ eigenvalues. [Cullum & Willoughby]
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Lanczos Bidiagonalization

» We now deal with rectangular matrices. Let A € R™*",

ALGORITHM : 3. Golub-Kahan-Lanczos

1. Choose an initial v, with ||vy||2 = 1;
Setﬂo =0,ug=0

2. Fork=1,...,p Do:
3. U:= Avg — Pr-1Uk—
4. ar = ||a|2; up = U/ oy
5. v = ATuk — OV
6. /Bki — ”,ﬁ”Q ; Vi1 = ’ﬁ/ﬁk
7. EndDo
Let: Vo1 = [v1,02, -4+ ,vp] € RPXPHD
. Up = [u17 Uy *** u’p] c R™MXP




Let:

Resun:l
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B, =

B

oy B

» B, = B,(:,1: p)
,’Up] € R"*P

» Vp = [v1, 09,0

> %ﬁl%ﬂ =1
>»U'U, =1

> AV, =U,B,
» A'U, = V,.1B)

ap Bp
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» QObserve that : ATAv,) = AT(U,B,)
= V,1B!B,

> BT B, is a (symmetric) tridiagonal matrix of size (p + 1) X p

» Call this matrix T},. Then: (ATA)V, =V, 1T,

» Standard Lanczos relation !
» Algorithm is equivalent to standard Lanczos applied to AT A.

» Similar result for the u;’s [involves A AT]

“1] Work out the details: What are the entries of T}, relative to those of B,,?




